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  Introduction 
 

Objectives 

 

 

 Evolution of structures in solid as it from liquid

 Effect of alloy elements/ impurities on the transformation processes

 Effect of processing techniques on evolution of structure

 Structure property relation.
 

 At some point of time or the other an engineering problem involves issues related 
to material selection.

 Understanding the behavior of materials, particularly structure-property 
correlation, will help selecting suitable materials for a particular application.

 To provide a basic understanding of the underlying principles that determines the 
evolution the evolution of structures in metals and alloys during their processing 
and its relation with their properties & performance in service.

What is physical metallurgy? 



  The Materials Tetrahedron 
 

The broad goal of Metallurgy & Materials 
Engineering is to understand and ‘Engineer’ 
this Tetrahedron 

 

 A materials scientist has to consider four ‘intertwined’ concepts, which are schematically 
shown as the ‘Materials Tetrahedron’.

 When a certain performance is expected from a component (and hence the material 
constituting the same), the ‘expectation’ is put forth as a set of properties.

 The material is synthesized and further made into a component by a set of processing 
methods (casting, forming, welding, powder metallurgy etc.).

 The structure (at various length scales) is determined by this processing.

 The structure in turn determines the properties, which will dictate the performance of 
the component.

 Hence each of these aspects is dependent on the others.
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
  The Materials Tetrahedron    



  A General Classification
 

 
 

Science of Metallurgy

MECHANICAL PHYSICAL 

• Structure 
• Physical 

Properties 

• Deformation 
Behaviour 

 

 
 

 

METALLURGY &
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 The broad scientific and technological segments of Metallurgy &
Science are shown in the diagram

 To gain a comprehensive understanding
studied. 

General Classification 

Metallurgy 

• Extractive
• Casting 
• Metal Forming
• Welding 
• Powder Metallurgy
• Machining

 TECHNOLOGICALELECTRO- 
CHEMICAL 

• Thermodynamics 
• Chemistry 
• Corrosion 

& MATERIALS ENGINEERING

The broad scientific and technological segments of Metallurgy & Materials
diagram below. 

understanding of Metallurgy, all these aspects

 

Extractive 

Forming 

Metallurgy 
Machining 

TECHNOLOGICAL 

 

ENGINEERING 

Materials 

aspects have to be 



  A Broad Overview 
 

Polymers Ceramics Metals 

Common type of materials 

Hybrids (Composites) 

 

 Based on state (phase) a given material can be Gas, Liquid or Solid

 Based on structure (arrangement of atoms/molecules/ions) materials can be 
Crystalline, Quasicrystalline or Amorphous.

 Based on Band Structure we can classify materials into Metals, Semiconductors 
and Insulators.

 Based on the size of the entity in question we can Nanocrystals, Nanoquasicrystals 
etc.

 

  Let us consider the common types of Engineering Materials.  

 
 
 

& Glasses 



 

   Classification of materials
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Segmented
divided in 1D, 2D or 3D
(may consist of one or
more materials).

 

*Note: this use of the word 'lattice' should not be confused

Materials 

Polymers (& Elastomers) 

Ceramics & Glasses 

Metals (& Alloys) 

Monolithic 

Segment

Lattice

Sandwich

Composite

Hybrids

materials based on form of

Segmented Structures: are 
divided in 1D, 2D or 3D 
(may consist of one or 

materials). 

confused with the use of the word in connection with crystallography.

Segment 

Lattice 

Sandwich 

Composite 

Hybrids 

 

designed to improve
certain
monolithic

Lattice* Structures: 
combination of material and space
(e.g. metallic or ceramic
aerogels etc.). 

Sandwich structures: have a
material on the surface (one
or more sides) of a core
material 

Composites: have two (or more)
solid components; usually one is a
matrix and other is a

of usage 

crystallography. 

Hybrids are 
designed to improve 
certain properties of 
monolithic materials 

 typically a 
combination of material and space 

ceramic forms, 

Sandwich structures: have a 
material on the surface (one 
or more sides) of a core 

Composites: have two (or more) 
solid components; usually one is a 

a reinforcement 



  Common materials : with various ‘viewpoints’ 
 

 

  

Graphite 
Glass: amorphous 

Polymers Metals 
Crystal 

Ceramics 



  Classes of property 
 

 
 

 

Economic Price and Availability, Recyclability 

General Physical Density 

 
Mechanical 

Modulus, Yield and Tensile strength, Hardness, 
Fracture strength, Fatigue strength, Creep strength, 
Damping 

Thermal Thermal conductivity, Specific Heat 

Electric & Magnetic Resistivity, Dielectric constant, Magnetic 
permeability 

Environmental 
interactions Oxidation, corrosion and wear 

Production Ease of manufacturer, joining, finishing 

Aesthetic (Appearance) Colour, Texture, Feel. 



  Length scales in metallurgy 
 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Vacancies 
• Dislocations 
• Twins 
• Stacking Faults 
• Grain Boundaries 
• Voids 
• Cracks 

Crystal 

Residual Stress 
& their distribution 

+ Defects + Phases 

Component Microstructure 

 Structure could imply two types of structure: 

 Crystal structure 

 Electromagnetic structure 

 Microstructure    can    be     defined     as: 
(Phases + Defect Structure + Residual Stress) 
and their distributions 

Electro- 
magnetic 

Structure Atom 



  Length scales
 

 
 

Let us start with a cursory look at the
 
 
 
 
 

Angstroms 
Dislocation Stress

→ Nanometers

Crystalline DefectsUnit Cell* 

scales in metallurgy 

the lengthscales involved in Materials Science

 

Stress fields 
Nanometers Microns Centimeters

Grain Size 

ComponentMicrostructure Defects 

 

Materials Science 

 

Centimeters 

 

Component 



 

  Questions? 
1. What is Physical Metallurgy? 

2. Give the broad classification of Materials? 

3. Define Metal, Ceramic and Composite. 

4. Define Macrostructure and Microstructure? 

5. What is Grain and Grain boundary? 

6. Give some of important properties of materials. 

7. What is composite? 

8. What is Bio-materials? 

9. What is smart materials? 

10. Give some of the types of advanced materials and its applications. 



 

 



 

 
 
 
 
 

 
 
 
 
 



  Introduction 
 

 

 In order to understand the structure of materials and its correlation to property, we 
have to start form the basic element of matter – The Atom

 An atom consists of a nucleus composed of protons and neutrons and electrons 
which encircle the nucleus.

 Protons and electrons have same and opposite charge of 1.6 x10-19 C.

 Atomic number (Z) = Number protons = number of electrons

 Atomic mass (A) = proton mass + neutron mass

 Isotopes are the same element having different atomic masses. Number of protons 
in isotopes remains same while number of neutrons varies.

 Atomic mass unit (amu) = 1/12 mass of Carbon 12 (12C)

 1 mol of substance contains 6.023 x 1023 (Avogadro’s number) atoms or molecules.

 Atomic weight = 1 amu/atom (or molecule) = 1 g/mol = Wt. of 6.023 x 1023 atoms 
or molecules.

 For example, atomic weight of copper is 63.54 amu/atom or 63.54 g/mole



  Role of atomic structure in materials 
 

 

 As we know, common to all materials is that they are composed of atoms.

 The properties (whether mechanical, electrical, chemical etc) of all solid materials 
are dependent upon the relative positions of the atoms in the solid (in other words 
the atomic structure of the material) and their mutual interaction i.e. the nature of 
the bonding (whether e.g. covalent, ionic, metallic, van der Waals).

 There are examples of where the atom-atom interactions is strongly reflected in the 
atomic structure. An example is diamond. Here the carbon-carbon interactions lead 
to a very directional covalent bond called a sp3 bond which has tetrahedral 
symmetry – this leads to an open structure as shown below.

 
 



  Role of atomic structure in materials 
 

 

 Of course carbon can also take the form of graphite. Here the carbon atoms are 
arranged in a rather different structure and graphite has very different properties to 
diamond!

 In other solid systems (for example many of the metallic elements) the atomic 
structure is dictated by how well we can ‘pack’ the atoms into 3D space – ‘packing 
efficiency’ – this leads to dense close-packed structures as we will also discuss in 
crystal structure chapter.

 So it is vital that to understand the properties of material, and to improve those 
properties for example by adding or removing atoms, we need to know the 
material’s atomic structure.

As Richard Feynman said….! 

“It would be very easy to make an analysis of any 
complicated chemical substance; all one would have to do 
would be to look at it and see where the atoms are…” 



  Atomic Interaction 
 

 Attraction is predominant above ro and 
repulsion is dominant below ro. 

 

 When two neutral atoms are brought close to each other, they experience attractive 
and or repulsive force.

 Attractive force is due to electrostatic attraction between electrons of one atom and 
the nucleus of the other.

 Repulsive force arises due to repulsion between electrons and nuclei of the atoms.

 The net force, FN (Fig) acting on the atoms is the summation of attractive and 
repulsive forces.

 The distance, at which the attraction and repulsion forces are equal and the net 
force is zero, is the equilibrium interatomic distance, ro . The atoms have lowest 
energy at this position.

 



  Electron
 

l +1) 

 

 

Electron configuration based on quantum
or Σ 

l =0 

n-1 
2(2 

The manner or sequence of filling of
principles / rules: 

The quantum mechanic principles as
configuration i.e. the manner in which

 Aufbau principle 

 Madelung’s rule 

Electron Configuration 

quantum numbers. Total number of electrons in

of electron orbital's is decided a by a set

as discussed before allow determination
which electron states are occupied in a given

n-1 

l =0 Σ 2(2 l +1) 

 

 

 

in a shell is 2n2 

a set of two 

determination of electron 
given atom.Σ 



  Electron Configuration 
 

 

 Aufbau principle (German meaning is building up) : it states that lower energy 
states will be filled up first.

 Madelung’s rule : Orbitals fill in the order of increasing (n+l). 4s (n+l = 4+0 = 4) 
will be filled before 3d (n+l= 3+2 = 5) and 5s (n+l = 5+0 = 5)

 For orbital with same values of (n+l), the one with lower ‘n’ will be filled first. 3d 
will be filled before 4p.

 
 

  Aufbau principle Madelung rule   



  Electron Configuration 
 

 Based on the foregoing discussion, it is now possible to find the electron 
configuration for a given atom. 

 For example, sodium Na11 

first figure. The second picture shows the Bohr configuration. 
23 has 11 electrons – the configuration is shown in the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Valence electrons 

 The electrons in 
valence electron 

 

the outer most shell are known as valence electrons. Na has one 
(the 3s electron). These electrons are responsible for chemical 

reaction and atomic bonding. 

 Look at the electron configuration of inert gases (He, Ne, Ar, Kr, Xe) in the 
previous table. Their valence electron cell is completely filled unlike any other 
element. 



  Electron Configuration 
 

 

 

Electron Configuration of Elements 

 Note that the configuration of higher atomic number elements can be expressed by 
the previous inert element configuration. 

 It is the tendency of every element to attain the lowest energy stable configuration 
that forms the basis of chemical reactions and atomic bonding. 



 

 Ionization Potential, Electron Affinity, Electronegativity  

 If sufficient energy is supplied, an electron in the outer orbital can break away 
completely from the atom and become free. The energy required to remove an 
electron in this manner is known as the Ionization potential.

 When the extra electron is attracted from infinity to the outer orbital of the neutral 
atom, is known as the electron affinity of the atom.

 The tendency of an atom to attract electrons to itself during the formation of bonds 
with other atoms is measured by the electronegativity of the atom.



 

 Let us start by looking at the relative
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Values are: Pauling-Ahrens Radii in Å 

0.68 

 
Li 

 
Li+ 

0.68 

 
Be 

1.12 

Be2+ 

0.35 1.52 

 
Na 

 
Na+ 

0.97 

 
Mg2+ 

 
0.66 

1.85 1.60 

 

K 
 

K+ 

 
Ca 

 
Ca2+ 

2.31 1.33 1.96 0.99 

 
 

Rb 

 
 

Rb+ 
 

1.47 

 

Sr 

 

Sr2+ 

 
1.12 

2.46 2.15 

 
 

Cs 

 

Cs+ 

 

Ba 

 

Ba2+ 

 
2.62 

 
1.67 

 
2.17 

1.34 

 

B 
0.89  

 

Al 

 

1.26 

relative sizes of some ions in the periodic

 

Ti4+ 

Ti 

Mn2+ 
0.83 

Mn 

Cr3+ 
0.63 

Cr 

V3+ 
0.74 

V 
1.31 1.46 1.12 1.25 

B3+ 

0.23 
C C4+ 

0.2 
0.77 

N N3+ 

0.1-0.2 
0.74 

 
O 

O2  

 0.74 1.40 

 
Al3+

 
Si4+ 

Si 
 

P 

 
P5+  

S 

 
S6+ 

 

0.51 1.17 0.42 1.10 
0.35 

1.04 
0.30 

periodic table  

0.64 Fe3+ Fe2+ 
0.74 

Fe 
1.24  

 
F F

 

 
1.33 

0.72   

 
Cl 

 
Cl

1.07 
 

1.81



  Concept of Thermal Expansion 
 

 
 
 
 
 
 
 

The minimum energy E0, and equilibrium 
inter-ionic spacing r0, at 0 Kelvin.  

 If the inter-ionic separation is fixed, it 
means the atoms are stationary, and this 
can occur only at 0 Kelvin. Therefore the 
atoms are at their minimum energy E0, 
and inter-ionic separation r0, at 0 Kelvin. 

 

 The length of a bond is defined as the center-to-center distance of the bonding 
atoms. Strong bonds pull the bonding atoms closer together and so have smaller 
bond lengths as compared to weak bonds.

 Primary bonds have lengths in the range 1-2 Å (0.1-0.2 nm). Secondary bond 
lengths are larger, in the range 2-5Å (0.2-0.5 nm)

 Some ambiguity in this definition arises if the element in question, exhibits 
different crystal forms.

 For example, the diameter of the iron atom is 2.48 Å when it is surrounded by 
eight neighbours in the BCC crystal and 2.54Å when it has 12 nearest neighbours 
in the FCC crystal.

 



  Concept of Thermal Expansion 
 

 

 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  

 

Effect of increasing temperature on the vibration of the ions and hence on the inter-ionic separation. The 
system is raised to temperature T1, and then further to T2. At T1, when the energy is E1, the ions are able to 
vibrate between the positions “A” and “B”. Similarly, at T2, when the energy is E2, the ions are able to 
vibrate between the positions “C” and “D” . 

 As the temperature of the system is raised to T1, and then further to T2, the solid 
becomes consistent with the higher temperatures by having the ions gain energy, 
and vibrate with increased amplitudes. Therefore, as shown in Figure(below), at 
T1, when the energy is E1, the ions are able to vibrate between the positions “A” 
and “B”. Similarly, at T2, when the energy is E2, the ions are able to vibrate 
between the positions “C” and “D”. 



  Concept of Thermal Expansion 
 

A hypothetical solid, in which the E Vs R curve is exactly 
symmetric. In this case when the temperature is raised, E 
increases, and the amplitude of vibration of the ions increase, but 
there is no thermal expansion since the mean inter-ionic distance 
is exactly the same at all temperatures 

 

 It is important to note from the Figure (previous slide) that, the midpoint between 
“A” and “B”, which represents the mean inter-ionic distance at T1, is r1 which is 
greater than r0. This is a direct result of the fact that the solid curve in Figure, is 
asymmetric.

 It is therefore important to note that thermal expansion occurs as a direct result 
of the fact that the ‘E Vs R’ curve is asymmetric.

 It is also important to note that while the general approach used here can be 
extended to many systems, the exact shape of the resultant curve obtained will 
depend on the details of the specific system. In some cases, such as ceramic 
materials, the resultant curve will have a very deep and narrow trough, such 
materials will have a very low coefficient of thermal expansion. In other cases, the 
resultant curve will have a shallow and wide trough, which will cause the material 
to display a high coefficient of thermal expansion.

 



  Atomic Bonding 
 

 
 
 

Covalent Metalic Ionic 

Primary Bonds 

Hydrogen Vanderwaals 

Secondary Bonds 

 Majority of the engineering materials consist of one of these bonds. Many 
properties of the materials depend on the specific kind of bond and the bond 
energy. 

 

 The mechanisms of bonding between the atoms are based on the foregoing 
discussion on electrostatic inter- atomic interaction.

 The types of bond and bond strength are determined by the electronic structures of 
the atoms involved.

 The valence electrons take part in bonding. The atoms involved acquire, loose or 
share valence electrons to achieve the lowest energy or stable configuration of 
noble gases.

 Atomic bonding can be broadly classified as i) primary bonding ii) secondary 
bonding

 

 



  Ionic Bond 
 

Cl

Na+ 

 

 Ionic bonds are generally found in compounds composed of metal and non-metal 
and arise out of electrostatic attraction between oppositely charged atoms (ions).

 Number of electron in outer shell is 1 in Na and 7 in Cl . Therefore, Na will tend to 
reject one electron to get stable configuration of Ne and Cl will accept one electron 
to obtain Ar configuration.

 The columbic attraction between Na+ and Cl¯ ions thus formed will make an ionic 
bond to produce NaCl.

 

 
 Some other examples are CaF2 , CsCl, MgO, Al2O3



  Covalent Bond 
 

 

 In this type of bonding, atoms share their valence electrons to get a stable 
configuration.

 Methane (CH4): Four hydrogen atoms share their valence electrons with one 
carbon atom and the carbon atom in turn shares one valence electron with each of 
the four hydrogen atoms. In the process both H and C atoms get stable 
configuration and form a covalent bond.

 

 Covalent bonds are formed between atoms of similar electro negativity.

 C atoms in diamond are covalently bonded to each other.

 Si also has valency of four and forms SiC through covalent bonding with C atoms.



  Metallic Bond 
 

 

 In metals the valence electrons are not really bound to one particular atom, instead 
they form a sea or cloud of valence electrons which are shared by all the atoms. 
The remaining electrons and the nuclei form what is called the ion core which is 
positively charged. The metallic bond arises out of the columbic attraction between 
these two oppositely charged species – the electron cloud and the ion cores.



 

 Electron cloud distribution
 
 

 
 

distribution in various kinds ofkinds of bonding  



  Characteristics of primary bonds 
 

 

 Ionic and covalent bonds posses high bond energy : 450-1000 KJ/mole

 High bond strength in ionic and covalent solids results in high melting point, high 
strength and hardness. e.g. diamond

 As the electrons are tightly bound to the atoms they are generally poor conductors 
of heat and electricity.

 Are brittle in nature

 Most of the ceramics consist of covalent (SiC) or ionic bonds (Al2O3) or a mix of 
both and hence, exhibit all the properties described above.

 Metallic bonds on the other hand provide good thermal and electrical 
conductivities as the valence electrons are free to move.

 The metallic bond energy is 68 kJ/mol (Hg) on the lower side and 850 kJ/mol (W, 
tungsten) on the higher side.

 Bond strength increases with atomic number as more electrons are available to 
form the bonds with the ion cores. As a result melting point, hardness and strength 
increases with atomic number.

 Metals are ductile as the free moving electrons provides agility to the bonds and 
allows plastic deformation.



  Vanderwaals bonding 
 

 

 Vanderwaals bonding between molecules or atoms arise due to weak attraction 
forces between dipoles.

 The natural oscillation of atoms leading to momentary break down of charge 
symmetry can generate temporary dipoles.

 

 Dipoles can induce dipoles and attraction between opposites ends of the dipoles 
leads to weak bonding.

 An ion can also induce a dipole

 Some molecules like HCl have permanent dipoles due to asymmetrical 
arrangement of +ve and –ve charges.

 



  Vanderwaals bonding 
 

 

 Van der Waals bonding is much weaker compared to primary bonds. Bond energy 
lies in the range of 2 – 10 kJ/mol

 Molecules in liquid and gas are held by weak Vanderwaals forces.

 The atomic layers in graphite are held together by weak vanderwaals bonds. 
Therefore, the layers can move easily over each other and this imparts the 
lubricating property graphite is known for.

 



  Hydrogen bonding 
 

 

 Hydrogen bond is a type of secondary bond found in molecules containing 
hydrogen as a constituent.

 The bond originates from electrostatic interaction between hydrogen and another 
atom of high electro-negativity such as fluorine or oxygen.

 The strength of hydrogen bonds is in the range of 10 - 50 kJ/mol.

 Water molecules, for example, are connected by hydrogen bonds (dashed lines in 
the picture).

 



  Mixed bonding 
 

 

 Many materials have a mixed bonding characteristics, between covalent and ionic 
bonding. Examples are as below.

 

 Oxides: % ionic bonding ~ 70% 
 Nitrides: % ionic bonding ~ 40% 
 Carbides: % ionic bonding ~ 15~20% 

 Metallic-covalent Mixed Bonding: The transition metals are an example where 
s,p,d-bonding orbital's lead to high melting points.

Binding Energies of Bonds  
  

Bond Type Energy (eV) Energy (kJ/mole) Energy (kJ/mole) 

Ionic ~5-15 (strong) ~500-1000 NaCl: 640 

Covalent ~1-10 (strong) ~100-1000 Diamond: ~710 

Metallic ~0.5-8.5 (strong) ~50-850 Fe: 406 

Hydrogen ~0.05-1.5 ~5-155 H2O: 51 

Van der Walls ~0.01-0.5 ~1-50 Ar:7.7 



  Questions? 
 

 

1. Define atom, electron, proton and neutron 

2. What is Pauli’s exclusion principle. 

3. Define a solid. Glass is not considered as true solid 

4. Why are noble gases inert? 

5. Briefly explain the primary bonds in solids. 

6. How do secondary bonds form? What is hydrogen bond? 

7. Why is graphite lubricating? 

8. Why are ceramics hard and brittle? Why are they not conductive? 

9. How many atoms are there in 1 g of copper? 

10. Why are some elements known as transition elements 

11. Why is Tungsten (74) much stronger than Aluminium (13) though both are 
metallic? 

12. Explain the arrangement of the elements in the periodic table 



 

 



 

 

 
 
 

 



 

Every periodic pattern (and hence a Crystal) has a unique lattice associate with it. 

M.C. Esher : Art with Science  
 
 

 



 

 
 

Water 
fall 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



  Why study crystal structures? 
 

 Gives a terse (concise) representation of a large assemblage of species 

 Gives the ‘first view’ towards understanding of the properties of the crystal 

 

 When we look around much of what we see is non-crystalline (organic things like 
wood, paper, sand; concrete walls, etc.  some of the things may have some crystalline parts!).

 But, many of the common ‘inorganic’ materials are ‘usually*’ crystalline:
□ Metals: Cu, Zn, Fe, Cu-Zn alloys 
□ Semiconductors: Si, Ge, GaAs 
□ Ceramics: Alumina (Al2O3), Zirconia (Zr2O3), SiC, SrTiO3 

 Also, the usual form of crystalline materials (say a Cu wire or a piece of alumina) 
is polycrystalline and special care has to be taken to produce single crystals

 Polymeric materials are usually not ‘fully’ crystalline

 The crystal structure directly influences the properties of the material
 
 

 Why study crystallography?    
 

  

  
* Many of the materials which are usually crystalline can also be obtained in an amorphous form 



  Platonic Solids 
 

 

 In 387B.C. scientist called “PLATO” most famous student of Socrates thought that 
whole universe is made up of five solids. Whole universe is periodic arrangement 
of five solids named as Platonic Solids. 

 

He had a some 
philosophical thought; 
in the universe we have 
5 elements made up of 
these five solids 

 
 
 

 In icosahedron, we will get best packing as for we concerned. But only problem is, 
if we try to translate it in 3D we can’t get continuous structure, without any voids 
left. This voids in crystallography is called frustation. 

 Long back people thought, it is not possible to have solids with Icosahedron 
packing; but it is possible when Quasicrystals are discovered in 1984. (Al-Mn) 

 Tetrahedron - 4 faces - Fire 
 Hexahedron - 6 faces - Earth 

 Octahedron - 8 faces - Air 

 Dodecahedron - 12 faces - GOD 

 Icosahedron - 20 faces - Water 



 

Put in Multiple Crystals (Phases) 
giving rise to interfacial defects ~Microconstituents

  Ideal Crystals → Real Crystals 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 

 
 
 

Put multiple ~microconstituents 
Add additional residual stress

Put in Crystalline defects 
& Free Surface 

& Thermal Vibration 

Crystal 

Consider only the Orientational
or 

Positional Order

Ideal Crystal 

~Microconstituents 

 → Microstructures → Material → Component 

Ideal Mathematical Crystal 

 

Material or Hybrid 

Real
usually 

start
descriptions

 
Component 

Microstructure 

Material 

‘Real Crystal’ 

Orientational 

Order 

Component  

Real materials are 
 complex and we 

start with ideal 
descriptions 



 

A 3D translationally periodic arrangement of atoms in a space is called a crystal. 

A 3D translationally periodic arrangement of points in a space is called a crystal. 

  Unit Cell   

  How to define a Crystal? 
  Crystal  

 
 

 

  Lattice  
 

 



  What is the relation between
 

Lattice  The underlying periodicity

Basis  Entity associated with 

Lattice

Motif

 
 
 

 

Motif or Basis: 
typically an atom or a group of atoms

 
 
 

 
 

 
 
 
 

 

Translationally periodic 
arrangement of points 

Lattice 

Crystal 

relation between the two

periodicity of the crystal 

 each lattice points 

Lattice  how to repeat 

Motif  what to repeat 

atoms associated with each lattice point

Crystal 

Translationally periodic
arrangement of motifs

 = Lattice + Motif 

two ? 

 

point 

periodic 
motifs 



  What is the relation between
 

Crystal 

 
Motif 

 

 
 
 

 
 
 

 
 

 

 

Motifs are associated with lattice points

Lattice 

Crystal = 
Lattice (Where to

a 

a 

relation between the two



a 

2 

Note: all parts of the motif do not

 = 
   

 

 + 

points  they need NOT sit physically at the

to repeat)+Motif (What to



two ? 

do not sit on the lattice point 

 

the lattice point 

to repeat) 



 

Note: we could have alternately

 

 
 

 

Example Let us construct
infinite array of

 
 

Put arrow marks pointing up and down
 
 
 

What we get is a crystal of lattice parameter

 

alternately chosen the centres of bottom arrows as lattice

construct the crystal considered before starting
of points spaced a/2 apart 

down alternately on the points: 

parameter ‘a’ and not ‘a/2’!  as this lattice
measure 

And the 
motif is: 
 + 

lattice points! 

starting with an 

lattice parameter is a 
 of the repeat distance! 



  Why study symmetry..? 
 

Symmetry can be defined as, if an object is brought into self-coincidence after 
some operation it said to possess symmetry with respect to that operation. 

Inversion 
Type II 

Mirror 
Symmetries 

Rotation 
Type I 

Translation 

 

 Crystals are an important class of materials. 

 Crystals (and in fact quasicrystals) are defined based on symmetry. 

 Symmetry helps reduce the ‘infinite’ amount of information required to describe a 
crystal into a finite (preferably small) amount of information. 

 In crystallography (the language of describing crystals) when we talk of Symmetry; 
the natural question which arises is: Symmetry of What? 

 The symmetry under consideration could be of one the following entities: 

 Lattice  Crystal  Motif  Unit cell 
 
 

 



  Translation
 

 

 The translation symmetry operator
displacement t or a distance t.

 A periodic array of points or objects

 Translational symmetry could be

 If we have translational symmetry
pattern we can describe the ‘repeat

 
 
 
 

  

 
 
 

⬟ ⬟ 





Translation 
operator (t) moves an point or an 

objects is said to posses translational symmetry.

could be in 2D or 3D (or in general nD).

symmetry in a pattern then instead of describing
‘repeat unit’ and the translation vector(s).

t 
   

 ⬟ t ⬟ ⬟ ⬟ ⬟ 

 
 object by a 

symmetry.

describing the entire 

  



  Rotation
 

 

 Rotation axis rotates a general point (and hence entire space) around the axis by a
certain angle

 On repeated operation (rotation) the ‘starting’ point leaves a set of ‘identity
before coming into coincidence with

 As we are interested mainly with crystals, we are interested in those rotations axes
which are compatible with translational
fold axis.

 If an object come into self-
angle of  then it is said to have

 

 

Rotation Axis 

n  
3600 



Rotation axis rotates a general point (and hence entire space) around the axis by a

On repeated operation (rotation) the ‘starting’ point leaves a set of ‘identity
with itself.

As we are interested mainly with crystals, we are interested in those rotations axes
compatible with translational symmetry → these are the (1), 2, 3, 4, 6 

coincidence through smallest non
have an n-fold rotation axis where:

 
Rotation axis rotates a general point (and hence entire space) around the axis by a 

On repeated operation (rotation) the ‘starting’ point leaves a set of ‘identity-points’ 

As we are interested mainly with crystals, we are interested in those rotations axes 
(1), 2, 3, 4, 6 – 

non-zero rotation 



  Rotational
 

 Crystals can only 

The rotations compatible with

 
 
 

 

=180

 


 


 


 
 
 
 
 

Rotational Symmetry 

only have 1, 2, 3, 4 or 6 fold symmetry 

compatible with translational symmetry are   (1, 2,

=180 n=2 2-fold rotation

=120
 

n=3 
 

3-fold rotation

=90
 

n=4 
 

4-fold rotation

=60
 

n=6 
 

6-fold rotation

 

2, 3, 4, 6) 

fold rotation axis 

fold rotation axis 

fold rotation axis 

fold rotation axis 



  Examples of Rotational Symmetry 
 

 
 
 
 
 
 

 

Angles 

180˚ 120˚ 90˚ 72 ˚ 60˚ 45˚ 

Fold 

2 3 4 5 6 8 

Graphic Symbol 
 



  Mirror
 

 

 The left hand of a human being 
translations and rotations

 The left hand is related to the right

 The right hand is called the enantiomorphic
 Another operator which takes 

operator (i)
m 

 
 
 
 
 
 
 
 
 
 
 
 

 

Vertical Mirror Horizontal Mirror

Mirror and Inversion 
 cannot be superimposed on the right 

right hand by a mirror symmetry operation

enantiomorphic form of the left hand
 objects to enantiomorphic forms is 

Mirror 

Inversion

 
 hand by mere 

operation (m)

 the inversion 

Inversion operator 



  Reflection ( or mirror symmetry) 
 

 
 
 
 
 
 
 
 
 
 
 

 



  Unit Cells (UC) 
 

 

 An unit cell (also sometimes causally referred to as a cell) is a representative unit 
of the structure
 Instead of drawing the whole structure I can draw a representative part and specify the 

repetition pattern 

 If the structure under considerations is a crystal, then the unit cell will also contain 
atoms (or ions or molecules etc.)

 The dimension of the unit cell will match the dimension of the structure; If the 
lattice is 1D the unit cell will be 1D, if the crystal is 3D then the unit cell will be 
3D, if the lattice is nD the unit cell will be nD.

 If the lattice points are only at the corners, the cell is primitive.

 If there are lattice points in the cell other than the corners, the cell is non- 
primitive.



  3D Unit Cell 
 

 

 In order to define translations in 3-D space, we need 3 non-coplanar vectors

 Conventionally, the fundamental translation vector is taken from one lattice point 
to the next in the chosen direction

 With the help of these three vectors, it is possible to construct a parallelopiped 
called a UNIT CELL

 
 
 



  Crystal Structures (or) 14 Bravais Lattices 
 

A Symmetry based concept ‘Translation’ based concept 

 
 
 

 

 Crystal System Lattice Parameters Bravais Lattices 

   P I F C 

1 Cubic (a = b = c,  =  =  = 90) ➹ ➹ ➹  

2 Tetragonal (a = b  c,  =  =  = 90) ➹ ➹   

3 Orthorhombic (a  b  c,  =  =  = 90) ➹ ➹ ➹ ➹ 

4 Hexagonal (a = b  c,  =  = 90,  = 120) ➹    

5 Trigonal (a = b = c,  =  =   90) ➹    

6 Monoclinic (a  b  c,  =  = 90  ) ➹   ➹ 

7 Triclinic (a  b  c,     ) ➹    

 

P Primitive 

I Body Centred 

F Face Centred 

C End Centred 



  Bravais Lattice: various viewpoints  
 

 

 A lattice is a set of points constructed by translating a single point in discrete steps 
by a set of basis vectors.

 In three dimensions, there are 14 unique Bravais lattices (distinct from one 

another) in three dimensions. All crystalline materials recognized till now fit in one 

of these arrangements.

 In geometry and crystallography, a Bravais lattice is an infinite set of points 
generated by a set of discrete translation operations.

 A Bravais lattice looks exactly the same no matter from which point in the lattice 
one views it. An important property of a lattice 

 Bravais concluded that there are only 14 possible Space Lattices (with Unit Cells 
to represent them). These belong to 7 Crystal systems. 

 There are 14 Bravais Lattices which are the Space Group symmetries of lattices 



 

 Elements with Cubic structure 

SC: F, O, Po 

BCC: Cr, Fe, Nb, K, W, V

FCC: Al, Ar, Pb, Ni, Pd,

1  Cubic  Cube  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P 

a  b

P I 

Elements with Cubic structure → 

: Cr, Fe, Nb, K, W, V 

Pd, Pt, Ge 

 
 
 
 
 
 
 
Lattice point 

➹ ➹ 

     90b  c 

F C 

F 

➹  

 I 



P I F C 
 

P 
 I 

a  b  c 

     90

 Elements with Tetragonal structure → In, Sn 

2  Tetragonal  Square Prism (general height)  ➹ ➹   
 

 
 

 

 
 



 

P 

 F 

 Elements with Orthorhombic

 
 
 
 
 

 
 



3  Orthorhombic  Rectangular

Orthorhombic structure → Br, Cl, Ga, I, Su 

a  b  c 

P I

One convention 

 a  b  c 

Note the position of 
‘a’ and ‘b’ 

     90

Rectangular Prism (general height)  ➹ ➹

 I 

C 

I F C 

➹ ➹ ➹ 



 

 Elements with Hexagonal

4  Hexagonal  120 Rhombic
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A single unit cell (marked in blue) 
along with a 3-unit cells forming a 

hexagonal prism 
 
 

 

 
 

Note: there is only one type of hexagonal 
lattice (the primitive one) 

  

Hexagonal structure → Be, Cd, Co, Ti, Zn

P I 

Rhombic Prism  ➹   

What about the HCP?
(Does it not have an additional atom somewhere

  90,  120

a  b  c 

Zn 

 F C 
 

HCP? 
somewhere in the middle?) 



 

P I F C 
 

5  
Trigonal /  

Rhombohedral 
Parallelepiped (Equilateral, Equiangular)  ➹ 

   

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note the position of the origin 

and of ‘a’, ‘b’ & ‘c’ 

     90

 Elements with Trigonal structure 
→ As, B, Bi, Hg, Sb, Sm 

a  b  c 



P I F C 
 

One convention 

 a  b  c 

   90  

Note the position of 
‘a’, ‘b’ & ‘c’ 

a  b  c 

 Elements with Monoclinic structure → P, Pu, Po 

 

6  Monoclinic  Parallogramic Prism  ➹   ➹ 
 
 
 

 
 
 
 
 

 



 

 

7  Triclinic  Parallelepiped

P I 

Parallelepiped (general)  ➹   

    

a  b  c 

F C 
  



 

MILLER INDICES 

 PLANES 

 DIRECTIONS 

 
 

 

 
 
 

From the law of rational indices developed by French Physicist and mineralogist 
Abbé René Just Haüy 

and popularized by 
William Hallowes Miller 



  Miller Indices 
 

Planes Directions 

Miller Indices 

Crystals Lattices 

Miller Indices 

 

 Miller indices are used to specify directions and planes.

 These directions and planes could be in lattices or in crystals.

 The number of indices will match with the dimension of the lattice or the crystal: 
in 1D there will be 1 index and 2D there will be two indices etc.

 Some aspects of Miller indices, especially those for planes, are not intuitively 
understood and hence some time has to be spent to familiarize oneself with the 
notation.

 
 
 
 

 



  Miller Indices for directions in 2D 
 

     

     

     

 

                


                

(4,3) 
                



                


                


                

(0,0) 
                

5a + 3b 

          



          

b 
            

a 


Miller indices → [53] 



  Miller indices for
 

 

 A vector r passing from the origin

 r = r1 a + r2 b + r3 c
 Where, a, b, c → basic vectors

 Basis vectors are unit lattice translation
(as in the figure below). 

 Note their length is not 1 unit! (like for
 
 

indices for directions in 3D
the origin to a lattice point can be written as



translation vectors which define the coordinate

(like for the basis vectors of a coordinate

r  r1 a  r2 b  r3 c 

3D 


coordinate axis

coordinate axis).



  Possible coordinates in 3D 
 

 
 
 

 
 
 

[- + -] 
 
 
 
 
 

[- + +] 

[+ + -] [+ - -] 
 
 
 
 
 

[+ - +] 
 
 

[- - +] 
 
 
 

 
If you have confusion while selecting origin in negative indices refer this figure 

[+ 

 
 

+ +] 

 

[- - -] 

Z 

Y 

X 



 

 Important directions in 3D represented by Miller Indices (cubic lattice)   
 

[001] [011] 

 
[101] 

 
 
 
 
 
 
 

 

[100] 

X 

 
 
[110] [110] 

Y [010] 

Face diagonal 
 

Procedure as before: 
• (Coordinates of the final point  coordinates of the initial point) 
• Reduce to smallest integer values 

Body diagonal 

1] [11

Memorize these 

Z 



 

Symbol 
Alternate 
symbol 

  

[ ]  → Particular direction 

< > [[ ]] → Family of directions 

 A set of directions related by symmetry operations of the lattice or the crystal is 
called a family of directions 

 A family of directions is represented (Miller Index notation) as: <u v w> 

the ‘negatives’ 
(opposite direction) 

  Family of directions 
 

 

Index Members in family for cubic lattice Number 

<100> [100],[100],[010],[0 10],[001],[001] 3 x 2 = 6 

<110> [110],[110],[1 10],[110],[101],[101],[10 1],[101],[011],[0 11],[01 1],[011] 6 x 2 = 
12 

<111> [111],[111],[111],[111],[111],[111],[111],[111] 4 x 2 = 8 

 



 

Miller indices for planes is not as intuitive as 
that for directions and special care must be 
taken in understanding them 

Illustrated here for the cubic lattice 

 Find intercepts along axes → 2 3 1 

 Take reciprocal* → 1/2 1/3 1 

 Convert to smallest integers in the same ratio → 3 2 6 

 Enclose in parenthesis → (326) 

  Miller Indices for Planes 
 
 

 
 

 

 

*The reciprocal procedure avoids the intercept of ∞ for a plane parallel to an axis, by making it 0 



 

  Important Planes in 3D represented by Miller Indices (cubic lattice)   
 



 

 
 
 
 

 Family of planes  
 
 
 
 
 
 
 
 
 
 

Intercepts → 1  
Plane → (100) 
Family → {100} → 6 

Intercepts → 1 1 
Plane → (110) 
Family → {110} → 6 

 

 

Intercepts → 1 1 1 
Plane → (111 ) 
Family → {111} → 8 
(Octahedral plane) 

 

The purpose of using reciprocal of 
intercepts and not intercepts 
themselves in Miller indices becomes 
clear → the  are removed 

 A set of planes related by symmetry operations of the lattice or the crystal is called a 
family of planes 

 All the points which one should keep in mind while dealing with directions to get the 
members of a family, should also be kept in mind when dealing with planes 



 

 Unknown direction → [uvw] 

 Unknown plane → (hkl) 

 Double digit indices should be separated by commas → (12,22,3) 

 In cubic lattices/crystals [hkl]  (hkl) 

Interplanar spacing (dhkl) in cubic 
lattice (& crystals) 

dcubic lattice 
hkl  a 

h2  k 2  l2 

  Summary on planes and directions 
 

 
 

 
 

 
Symbol 

 Alternate 
symbols 

  

 
Direction 

[ ] [uvw]  → Particular direction 

< > <uvw> [[ ]] → Family of directions 

 
Plane 

( ) (hkl)  → Particular plane 

{ } {hkl} (( )) → Family of planes 



  Directions  Planes 
 

 

 Cubic system: (hkl)  [hkl]

 Tetragonal system: only special planes are  to the direction with same indices: 
[100]  (100), [010]  (010), [001]  (001), [110]  (110)
([101] not  (101)) 

 Orthorhombic system:
[100]  (100), [010]  (010), [001]  (001) 

 Hexagonal system: [0001]  (0001)
(this is for a general c/a ratio; for a Hexagonal crystal with the special c/a ratio = 
(3/2) the cubic rule is followed) 

 Monoclinic system: [010]  (010)

 Other than these a general [hkl] is NOT  (hkl)



  Coordination Number 
 

The coordination number of simple cubic 
crystal is ‘6’ It is shown in figure. In this figure 
we are considered one corner and drawn 3 lines 
connecting to six points. 

 

 
 
 

  Simple cubic   
 
 

 
 

  Body Centered cubic   

 
The coordination number of BCC crystal is 8. 
The body centered atom is in contact with all the 
eight corner atoms. Each corner atom is shared 
by eight unit cells and hence, each of these 
atoms is in touch with eight body centered 
atoms. 

Coordination number is defined as the total number of nearest neighboring atoms 



  Coordination Number 
 

In Hexagonal lattice Z = 12. The center 
atom of the top face is in touch with six 
corner atoms, three atoms of the mid layer 
and other three atoms of the mid layer of the 
unit cell above it. 

 

  Face Centered cubic   

In the FCC lattice each atom is in contact 
with 12 neighbor atoms. FCC coordination 
number Z = 12 . For example, the face 
centered atom in the front face is in contact 
with four corner atoms and four other face- 
centered atoms behind it (two sides, top and 
bottom) and is also touching four face- 
centered atoms of the unit cell in front of it. 

 

  Hexagonal close pack structure   
 



  Average number of atoms per unit cell 
 

 
 
 

  Position of atoms Effective number of atoms 

1 SC 8 Corners = [8  (1/8)] = 1 

 
2 

 
BCC 

8 Corners 
+ 
1 body centre 

 
= [1 (for corners)] + [1 (BC)] = 2 

 
3 

 
FCC 

8 Corners 
+ 

6 face centres 

 
= [1 (for corners)] + [6  (1/2)] = 4 

 
 

4 

 
 

HCP 

12 corners (6 bottom+6 top) 
+ 
2 atoms at face centers 

+ 

3 atoms in the interior 

 

= [12  (1/6) ] + [2  (1/2)] + [3 
(interior) ] = 6 



  Atomic packing factor 
 

APF  3  3  
4 

100  0.52  52% 
1 

4 
 r 3 

4 
 r 3 

a3 (2r)3 24 

APF  Avg.noofatomsperunitcell Volumeofanatom 
Volumeoftheunitcell 

In a simple cubic structures, the atoms are assumed to be placed in such a way that 
any two adjacent atoms touch each other. If ‘a’ is the lattice parameter of simple 
cubic structure and ‘r’ the radius of atoms. From the figure it is clear that 
Atomic radius (r) = a2 

 

 
 

  Simple Cubic   
 

Atomic packing factor (APF) or packing efficiency indicates how closely atoms are 
packed in a unit cell and is given by the ratio of volume of atoms in the unit cell and 
volume of the unit cell. 

APF  
Volumeofatoms 
Volumeofunitcell 



  Atomic packing factor 
 

APF  0.68(or)68% 

 

  Body Centered Cubic   

In body centered cubic structures the center atom touches 
the corner atoms as shown in Figure 

From the figure 

c2  b2  a2 c2  2a2  a2 b2  a2  a2  2a2 
 

c2  3a2  (4r)2  3a2  r2  
3a2

 

16 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c a 

b a 

r 
4 
3a 

, a  
4r 

3 
r = atomic radius 
a = lattice parameter 

APF 
2 

4  r3 
  3  

2    4  3a 
3 

a3 


3 
a3 

4  83 3  a3 
3 64a3 



  Atomic packing factor 
 

4 

APF  3    
4  r3 4  

3 2 2 

4  a 
3 

16 2 2  a3 
a3 a3 3 64a3 

 0.74 

APFFCC  0.74(or)74% 

 

  
 
 
 
 

 
 
 
 

(4r) 2  a 2  a 2 16r 2  2a 2  r 2  
2a2

 

16 

r  
a
 2  

a 

4 2 2 

  Face Centered Cubic   

From this figure; first we can calculate 
atomic radius: 

a  4r  4r  2a 
2 



 Hexagonal crystals → Miller-Bravais Indices : Planes  
 

 

 Directions and planes in hexagonal lattices and crystals are designated by the 4- 
index Miller-Bravais notation

 In the four index notation:
 the first three indices are a symmetrically related set on the basal plane 
 the third index is a redundant one (which can be derived from the first two) and 
is introduced to make sure that members of a family of directions or planes have a 
set of numbers which are identical 
 the fourth index represents the ‘c’ axis ( to the basal plane) 

 
 
 

Related to ‘l’ index 
 
 
 
 
 

Related to ‘i’ index  Related to ‘k’ index 

Related to ‘h’ index 

 Hence the first three indices in a 
hexagonal lattice can be permuted to 
get the different members of a family; 
while, the fourth index is kept 
separate. 



 Hexagonal crystals → Miller
 

In general three indices point is denoted as miller indices i.e., (h k l). But hexagonal crystals we

are using 4 indices point is denoted by miller

notation is to bring out the equivalence between cryst

directions. 

a3 
 

 
 
 
 
 

a1 
 

Miller-Bravais Indices : 

a2 

Intercepts → 1 1 - ½ 

Plane → (1 12 0) 

In general three indices point is denoted as miller indices i.e., (h k l). But hexagonal crystals we

are using 4 indices point is denoted by miller-bravais indices i.e., (h k i l)The use of the 4 index

notation is to bring out the equivalence between crystallographically equivalent planes and

 PLANES   

(h k i l) 
i = (h + k) 

In general three indices point is denoted as miller indices i.e., (h k l). But hexagonal crystals we 

bravais indices i.e., (h k i l)The use of the 4 index 

allographically equivalent planes and 



 Hexagonal crystals → Miller-Bravais Indices : PLANES   
 

Intercepts → 1 -1  

Miller → (1 1 0 ) 

Miller-Bravais → (1 1 0 0 ) 

Intercepts →  1 -1 
Miller → (0 1 0) 

Miller-Bravais → (0 11 0) 

a3 
 
 
 
 
 
 
 
 
 
 
 

a2 

Obviously the ‘green’ and 
‘blue’ planes belong to the 
same family and first three 
indices have the same set of 
numbers (as brought out by the 

1 Miller-Bravais system) 
 
 

a 



 Hexagonal crystals → Miller-Bravais Indices : PLANES   
 

 
 
 
 
 

a3 
 
 
 
 
 
 
 
 
 
 
 

a2 
 
 
 
 
 
 
 
 
 
 

a1 Intercepts → 1 -2 -2 

Plane → (2 11 0 ) 

Intercepts → 1 1 - ½ 

Plane → (1 12 0) 



 Hexagonal crystals → Miller-Bravais Indices : PLANES   
 

Intercepts → 1   1 1 

Plane → (1 01 1) 

 
 
 
 

 
 

Both planes contain same 
intercepts. The common thing 
in these planes is a2 axis is 
infinite 

 
 
 
 
 
 
 
 
 

Intercepts → 1 1 - ½ 1 

Plane → (1 12 1) 



   Hexagonal crystals → Miller
 

 

 

 

• Trace a path along the basis vectors as required
1unit along a1, 1unit along a2 and 2 units

• Directions are projected onto the basis vectors to
Bravais indices can be determined as in the

Drawing the [1120] direction

Miller-Bravais Indices : DIRECTIONS

 

required by the direction. In the current example
units along a3. 

vectors to determine the components and hence 
the table. 

direction 

Drawing the [1010] direction

DIRECTIONS 

example move 

 the Miller- 

direction 



   Hexagonal crystals → Miller-Bravais Indices : DIRECTIONS 
 

u  
1 

(2U V ) 
3 

v  
1 

(2V U ) 
3 

W  w 

 Directions in the hexagonal system can be expressed in many ways 

 3-indices: 
By the three vector components along a1, a2 and c: 
rUVW = Ua1 + Va2 + Wc 

 In the three index notation equivalent directions may not seem 
equivalent; while, in the four index notation the equivalence is 
brought out. 

 

 
 

U  u  t 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Transformation between 3-index [UVW] and 4-index [uvtw] notations 

w W 

t  (u v) 

V  v t 



 

a c 
2 

30 
30 x 

a 

3

3 

Consider any one triangle 
Let us consider ∆AOB; 
‘P’ is center of triangle 
APOB - Tetrahedron 

  

  Atomic packing factor 
  Hexagonal Close Packed Structure   

 

P 
 
 
 

In the ∆ AYB A O
 

Cos300  
AY Y

 
AB 

B 
The distance between any neighboring atoms 
is ‘a’ from the figure ‘AB’ = a 

 
AY  ABcos300  

a 3
 

2 

From the figure ‘Ax’ is orthocenter; so, 
 

Ax  
2 

AY 
3 

2  
a  

a 

3 2 

Q 
P R 

a 
c 
2 

x 
a a 



 

c2 

a2 
 

8  
c 

3 a 

8 
3 

1.633 

APF  Avg.noofatomsperunitcell Volumeofanatom 
Volumeoftheunitcell 

6 
4  r3 

APF  3  
Volumeoftheunitcell 

  Hexagonal Close Packed Structure P 

 
Consider ∆ APx a c 

2 

(AP)2  (Ax)2  (xP)2 A 30 
O

 
a2 c2 a2 2 2 30 x 

a2   4  a2  3  
c  

c  
2a2 a Y 

3 4 4 3 
B 

 
 
 
 
 
 
 
 
 
 
 

In cubic a=b=c, so volume is a3 but in this case, it is H.C.P so here a=b≠c 

   Volume of unitcell = Area of base of hexagonal  Height  



 

Volumeofuintcell 6areaof AOBc 

  Hexagonal Close Packed Structure   

   Volume of unitcell = Area of base of hexagonal  Height  
 

Volumeofunitcell  6 
1 OB  AY c 
2 

Volumeofunitcell  6 
1 
 a  

a
 

2 

3 
c  ca2 

3 3
 

2 2 

6 
4  r3 

APF  3  

ca2 3 3 
2 4 4 a3 

6    r3 6        2 a   
APF   3  

ca2 3 3 

2 

 3 8 

ca2 3 3 

2 

 
c 3 3 

 0.74 

APFHCP  0.74(or)74% 



  Summary on PACKING FRACTION / Efficiency  
 

 
 

Packing Fraction  
Volume occupied by atoms 

Volume of Cell 
 
 

 SC* BCC* CCP DC HCP 

Relation between atomic radius (r) 
and lattice parameter (a) 

a = 2r 3a  4r 2a  4r 

 

3 
a  2r 

4 
a = 2r 

c  4r 
2 
3 

Atoms / cell 1 2 4 8 2 

Lattice points / cell 1 2 4 4 1 

No. of nearest neighbours 6 8 12 4 12 

Packing fraction 
6 

   3 
8 

   2 
6 

   3 
16 

   2 
6 

 ~ 0.52 ~ 0.68 ~ 0.74 ~ 0.34 ~ 0.74 

 

* Crystal formed by monoatomic decoration of the lattice 



  Density 
 

 

 The usual density is mass/volume

 In materials science various other kinds of density and occupation ratios are defined. These 
include:
 Linear density: mass/length [kg/m] 

atoms/length [/m] or number/length 
length occupied/length [m/m] 

 Planar(Areal) density: mass/area [kg/m2] 
atoms/area [/m2] or number/area 
area occupied/area [m2/m2] 

 Volume density: mass/volume [kg/m3] 
atoms/volume [/m3] or number/volume 
volume occupied/volume [m3/m3] 

 The volume occupied/volume of space [m3/m3] is also called the packing fraction

 In this context other important quantities include:
 Length/area [m/m2]  e.g. length of dislocation lines per unit area of interface (interfacial dislocations) 

 Length/volume [m/m3]  e.g. length of dislocation lines per unit volume of material 

 Area/volume [m2/m3]  e.g. grain boundary area per unit volume of material 

 The ‘useful’ way to write these quantities is to NOT factor out the common terms: i.e. write 
[m/m3] ‘as it is’ and not as [1/m2]



  Linear density 
 

LD [110] 
2 

2a 
 2 

a 

This is the most densely packed direction in the FCC lattice 

 

   Linear density (LD) is the number of atoms per unit length along a particular direction 
 

LinearDensity  
Numberofatomsonthedirectionvector 

Lengthofthedirectionvector 
 
 

 
 

<110> directions in the FCC lattice have 2 atoms (1/2 x 2 corner atoms + 1 center 
atom) and the length is 

 

 
 
 



  Planar(Areal) density 
 

a 

This is higher than {110} and any other plane. Therefore, {111} 
planes are most densely packed planes in the FCC crystal 

 

  Planar density (PD) refers to density of atomic packing on a particular plane.   

PlanarDensity  
Numberofatomsonaplane 

Areaofplane 
 

 

√2a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For example, there are  2 atoms (1/4 x 4 corner 
atoms + 1/2 x 2 side atoms) in the {110} planes in 
the FCC lattice. 
Planar density of {110} planes in the FCC crystal 

PD (110) 
 2  2 
a 2a a2 

PD (111) 
2 

1 
2 

2a  2a 
3 

2 

 4 

3a2 

In the {111} planes of the FCC lattice there are 2 
atoms (1/6 x 3 corner atoms + 1/2 x 3 side atoms). 
Planar density of {111} planes in the FCC crystal 



  Theoretical (Volume) density 
 

  4 26.98 
(4.05108 )3  6.0231023 

 2.697g / cc 

 
 

 
 
 

Theoretical density  
n = number of atoms in the unit cell 
A = atomic weight 
VC = Volume of unitcell 
NA = Avogadro’s number (6.023  1023) 

 

 
 

Given :  Al is FCC structure; Lattice parameter is 4.05A0 ; n=4; 
Atomic weight of Al is 26.98 g/mol 

 
 
 

Calculate the theoretical density of Aluminum (Al) 

Theoretical density calculation from crystal structure 

 
nA 

VC NA 



 

 CCP=FCC Closed Packed
 

Start with a row of atoms (close packed
 
 

Make a 2D hexagonal close packed array
 

There is

To build the next layer  leading to the 3D structure,
the B and C positions. If atoms are put in the B 

Packed Structures : FCC 

packed in 1D) 

 

array (the A layer) 

Monatomic decoration of FCC

• This is a close packed
close packed directions
<110> directions represented
using cubic indices)

• As we shall see this
{111} plane in the

is only one way of doing so! 

structure, there are 2 stable positions where atoms can be
 position than we cannot put atoms in the C position

 CCP=FCC  

FCC lattice 

packed layer with 
directions (like 

represented 
cubic indices) 

this becomes the 
the FCC crystal 

can be put  called 
position (no space!) 



 

C 

  Closed Packed
Putting atoms in the B position in the II
stacking sequence  ABC ABC ABC….

 
 

+ 

 

 
A B 

 

A 

B 

A 

C 
B

Packed Structures : FCC 
II layer and in C positions in the III layer we

ABC….  The CCP (FCC) crystal 

 + = 

 C FCC

B 

 
we get a 

FCC CCP=FCC   



  Closed Packed
 

 

An alternate packing (one amongst 
coincides with the I layer  giving
Hexagonal Close Packed Crystal (this
sphere’ packing) 

 

 As before we make a 2D hexagonal close

 

 
 
 

Metals which adopt HCP structure 
Mg, Zn, Ti, Co, Be, Cd, Zr, Y, Sc, Tc,

Packed Structures : HCP 

 an infinite possibilities) is where in the
giving rise to a AB AB AB … packing  The

(this arrangement is close packed only for ideal c/a ratio;

close packed array (the A layer)  

• This is a close packed layer
with close packed
(like 1120  directions)

• As we shall see this becomes
the {0001} plane in the HCP
crystal 


Tc, Ru, Gd, Tb, Dy, Ho, Er, Tm, Lu, Hf, Re,

 

the III layer 
The 

ratio; i.e. for ‘hard 

This is a close packed layer 
packed directions 

directions) 
As we shall see this becomes 

plane in the HCP 

Re, Os, Tl 
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The C position is vacant and we can
pass a line through this position without
intersecting any atoms 
As we shall see in one of the upcoming
slides that this is special line 
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  Structure-Property Correlation 
 

 

 Aluminum (Al) is ductile while iron (Fe) and magnesium (Mg) are not. This can be 
explained from their crystal structures.

 Al is FCC where as Fe is BCC and Mg is HCP.

 Plastic deformation in metals takes place mainly by a process called slip. Slip can 
broadly be visualized as sliding of crystal planes over one another. Slip occurs on most 
densely packed planes in the most closely packed directions lying on that plane.

 The slip plane and the direction together is called a Slip system

 In FCC, {111} planes are close-packed and there are four unique {111} planes. Each of 
these planes contains three closely packed <110> directions. Therefore, there are 4 x 3
= 12 slip systems 

 In HCP, the basal plane, (0001) is the close-packed and it contains three <11 2 0> 
directions. Hence, number of slip system = 1 x 3 = 3

 Slip in more number of slip systems allows greater plastic deformation before fracture 
imparting ductility to FCC materials.

 Close-packed planes are also planes with greatest interplanar spacing and this allows 
slip to take place easily on these planes.

 BCC structure on the other hand has 48 possible slip systems. However, there is no 
close-packed plane. Hence, plastic deformation before fracture is not significant. Slip 
might occur in {110}, {112} and {123} planes in the <111> directions.



  Questions? 
 

 

1. What is unit cell? What is lattice parameter? 

2. What is Bravais lattice? How are the Bravais lattices obtained from the primitive 
cell? How many types of Bravais lattices are there? 

3. Draw two adjacent FCC unit cells and join the top and bottom face centers of 
each cell. Also join these four face centers to the nearest common corners. 

i. What is the unitcell outlined by this procedure? 

ii. Is it in the Bravais list? 

4. Show that packing efficiency of FCC is 74% and that of BCC is 68%. 

5. Show that the ideal c/a ratio in a hexagonal unit cell is 1.633 and calculate the 
packing efficiency. 

6. What is miller index? How is it obtained? 

7. Draw the planes (1 10),(121),(234),(1 12) 
cubic unit cell. 

and directions [111],[123],[120],[121] in a 

8. If the lattice parameter of Alpha iron is 286 pm, what is its atomic radius? 

9. Lattice constant of Al is 4.05 Å. What is the atomic radius of Al? 

10. What is the difference between atomic structure and crystal structure? 



  Questions? 
 

 

11. Why it is necessary to include a fourth miller index in the hexagonal system? 

12. Convert the directions [112], [1 3], [110], [111], to four indices in a hexagonal 
lattice. 

13. A metal has a density of 10.22 g2/cc, atomic weight of 95.94 and atomic radius of 
0.136 nm. Is it BCC or FCC? 

14. Calculate the volume of the unit cell of Zn crystal. a and c of Zn are 266.5 pm and 
494.7 pm respectively. 

15. Some hypothetical metal has the simple cubic crystal structure. If its atomic weight 
is 74.5 g/mol and the atomic radius is 0.145 nm, compute its density. 

16. Calculate the planar density of {110} planes in α-Fe (BCC) crystal. a = 0.287 nm. 

17. Calculate the linear density of [110] direction in a Cu crystal. a = 0.361 nm. 

18. What are the miller indices of a plane that intersects the X axis at 2 and the Y 
axis at ½ and is parallel to the z axis? The structure is cubic. 

19. Copper has FCC crystal structure and the unit cell with a lattice constant of 0.361 
nm. What is the inter-planar spacing of d111 planes? 



  Questions? 
 

 

 

20. Determine the indices for the directions and plane shown in the following 
hexagonal unit cell: 
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INTRODUCTION 
 

Mechanical metallurgy is the area of knowledge which deals with the behavior and response of metals to 

applied forces. 

 
It will mean different things to different persons 

 
 Mechanical properties of metals or mechanical testing 

 The plastic working and shaping of metals 

 Theoretical aspects of the field, which merge with metal physics and physical metallurgy 

 Mechanical metallurgy is closely allied with applied mathematics and applied mechanics 

 
Mechanical metallurgy is the area of metallurgy which is concerned primarily with the response of metals to 

forces or loads. 

 
It is necessary to know something about the limiting values which can be withstood without failure. 

 
 A continuous body is one which does not contain voids or empty spaces of any kind. 

 A body is homogeneous if it has identical properties at all points. 

 A body is considered to be isotropic with respect to some property when that property does not vary 

with direction or orientation. 

 A property which varies with orientation with respect to some system of axes is said to be anisotropic. 

 
ELASTIC AND PLASTIC BEHAVIOR 

 
 The recovery of the original dimensions of a deformed body when the load is removed is known as 

elastic behavior. 

 The limiting load beyond which the material no longer behaves elastically is the elastic limit. 

 If the elastic limit is exceeded, the body will experience a permanent set or deformation when the load is 

removed. A body which is permanently deformed is said to have undergone plastic deformation. 

Hooke's law 

 For most materials, as long as the load does not exceed the elastic limit, the deformation is proportional 

to the load. This relationship is known as Hooke's law; it is more frequently stated as 5 . 

 However, it does not necessarily follow that all materials which behave elastically will have a linear 

stress-strain relationship. Rubber is an example of a material with a nonlinear stress-strain relationship 

that still satisfies the definition of an elastic material. 



 

 

AVERAGE STRESS AND STRAIN 

 
A load P is applied to one end of the bar,

in diameter. The distance between the gage
 

The average linear strain e is the ratio of
 

 

Strain is a dimensionless quantity. 

The external load P is balanced by the internal

plane and A is the cross-sectional area of
 
 

 
 

 

 

The elastic limit Hooke's law can be considered

strain, 

 

The constant E is the modulus of elasticity
 

TENSILE DEFORMATION OF DUCTILE

 
The data obtained from the tension test are

 It shows a typical stress-strain curve

 The initial linear portion of the curve

 Point A is the elastic limit, defined

experiencing a permanent strain 

3 

bar, and the gage length undergoes a slight increase

gage marks has increased by an amount δ, called the deformation.

ratio of the change in length to the original length. 

= 

internal resisting force , where σ is the stress

of the bar. The equilibrium equation is 

 

 
 

 

considered valid, so that the average stress is proportional

 
     

 

elasticity, or Young's modulus. 

DUCTILE METAL 

test are generally plotted as a stress-strain diagram. 

curve for a metal such as aluminum or copper. 

curve OA is the elastic region within which Hooke's law

defined as the greatest stress that the metal can withstand

 when the load is removed. 

increase in length and decrease 

called the deformation. 

stress normal to the cutting 

proportional to the average 

Hooke's law is obeyed. 

withstand without 



4 

 

 

 The determination of the elastic limit is quite tedious, not at all routine, and dependent on the sensitivity 

of the strain-measuring instrument. 

 For these reasons it is often replaced by the proportional limit, point A'. 

 The proportional limit is the stress at which the stress-strain curve deviates from linearity. 

 The slope of the stress-strain curve in this region is the modulus of elasticity. 

 For engineering purposes the limit of usable elastic behavior is described by the yield strength, point B. 

 The yield strength is defined as the stress which will produce a small amount of permanent deformation, 

generally equal to a strain of.0.002. This permanent strain, or offset, is OC. 
 

 

 Plastic deformation begins when the elastic limit is exceeded. 

 As the plastic deformation of the specimen increases, the metal becomes stronger (strain hardening) so 

that the load required extending the specimen increases with further straining. 

 Eventually the load reaches a maximum value. The maximum load divided by the original area of the 

specimen is the ultimate tensile strength. 

 For a ductile metal the diameter of the specimen begins to decrease rapidly beyond maximum load, so 

that the load required continuing deformation drops off until the specimen fractures. 

 
DUCTILE Vs BRITTLE BEHAVIOR 

 
Brittle Materials: A completely brittle material would fracture almost at the elastic limit 

Ductile Materials: A brittle metal, such as white cast iron, shows some slight measure of plasticity before 

fracture 



 

 

 

 Adequate ductility is an important

redistribute localized stresses. 

 It is important to note that brittleness

 A metal such as tungsten, which is

 A metal which is brittle in tension

 Furthermore, a metal which is ductile

of notches, low temperature, high rates

 
CONCEPT OF STRAIN AND THE TYPES OF

 
The average linear strain (engineering 

length of the same dimension. 
 

Where e = average linear strain 

δ= deformation 

Rather than referring the change in length to the original gage length, it often is more useful to define the strain

as the change in linear dimension divided by the instantaneous value of the dimension. The above equation

defines the natural or true strain. 

 
Not only will the elastic deformation of a body result in a change in length of a linear element in the body, but it

may also result in a change in the initial angle between any two lines. The angular change in a right angle is

known as shear strain. 
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important engineering consideration, because it allows

brittleness is not an absolute property of a metal. 

which is brittle at room temperature, is ductile at an elevated

tension may be ductile under hydrostatic compression.

ductile in tension at room temperature can become

high rates of loading, or embrittling agents such as hydrogen.

TYPES OF STRAIN 

 strain) was defined as the ratio of the change in

= 

Rather than referring the change in length to the original gage length, it often is more useful to define the strain

as the change in linear dimension divided by the instantaneous value of the dimension. The above equation

Not only will the elastic deformation of a body result in a change in length of a linear element in the body, but it

may also result in a change in the initial angle between any two lines. The angular change in a right angle is

allows the material to 

elevated temperature. 

compression. 

become brittle in the presence 

hydrogen. 

in length to the original 

Rather than referring the change in length to the original gage length, it often is more useful to define the strain 

as the change in linear dimension divided by the instantaneous value of the dimension. The above equation 

Not only will the elastic deformation of a body result in a change in length of a linear element in the body, but it 

may also result in a change in the initial angle between any two lines. The angular change in a right angle is 
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Poisson’s ratio:   While a tensile force in the x direction produces an extension along that axis, it also produces 

a contraction in the transverse y and z directions. The transverse strain has been found by experience to be a 

constant fraction of the strain in the longitudinal direction. This is known as Poisson's ratio, denoted by the 

symbol P. 

 For most metals the values of v are close to 0.33. 
 

 
ELEMENTS OF THE THEORY OF PLASTICITY 

 
 The theory of plasticity deals with the behavior of materials at strains where Hooke's law is no longer 

valid. 

 Elastic deformation depends only on the initial and final states of stress and strain. 

 The plastic strain depends on the loading path by which the final state is achieved. 

 Moreover, in plastic deformation there is no easily measured constant relating stress to strain as with 

Young's modulus for elastic deformation. 

 The phenomenon of strain hardening is difficult to accommodate within the theory of plasticity 

without introducing considerable mathematical complexity. 

 Also, several aspects of real material behavior, such as plastic anisotropy, elastic hysteresis, and the 

Bauschinger effect cannot be treated easily by plasticity theory. 



 

 

THE FLOW CURVE 
 

The stress-strain curve obtained by uniaxial loading, as in the ordinary tension test, is of fundamental interest in

plasticity when the curve is plotted in terms of

 
 A true stress-strain curve is frequently

the metal to flow plastically to any

 Many attempts have been made to

 The most common is a power expression
 

 Were K is the stress at ε = 1.0 and 

above Eq. 

 This equation can be valid only from

specimen begins to neck down. 
 

 

TRUE STRESS AND TRUE STRAIN

STRESS 
Stress, σ, is defined as the intensity of force

σ = ∂F/∂ A as ∂ A → 0. 

If the state of stress is the same everywhere

σ = F/A. 

A normal stress (compressive or tensile)

shear stress, the force is parallel to the area
 

Two subscripts are required to define a stress. The first subscript denotes the normal to the plane on which the

force acts and the second subscript identifies the direction of the force.* For example, a tensile stress in the 

direction is denoted by σxx , indicating that the force is in the 

shear stress, σxy, a force in the y-direction

 
Because stresses involve both forces and areas, they are not vector quantities. Nine 

needed to describe a state of stressfully
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strain curve obtained by uniaxial loading, as in the ordinary tension test, is of fundamental interest in

terms of true stress and true strain. 

frequently called a flow curve because it gives the stress

any given strain. 

to fit mathematical equations to this curve. 

expression of the form 

is the stress at ε = 1.0 and n, the strain-hardening coefficient, is the slope of a log

from the beginning of plastic flow to the maximum

STRAIN 

force at a point: 

everywhere in a body, 

tensile) is one in which the force is normal to the area 

area on which it acts. 

Two subscripts are required to define a stress. The first subscript denotes the normal to the plane on which the

force acts and the second subscript identifies the direction of the force.* For example, a tensile stress in the 

, indicating that the force is in the x-direction and it acts on a plane normal to 

direction acts on a plane normal to x. 

Because stresses involve both forces and areas, they are not vector quantities. Nine components of stress are

stressfully at a point, as shown in Figure 1.1. The stress

strain curve obtained by uniaxial loading, as in the ordinary tension test, is of fundamental interest in 

stress required to cause 

hardening coefficient, is the slope of a log-log plot of 

maximum load at which the 

 on which it acts. With a 

Two subscripts are required to define a stress. The first subscript denotes the normal to the plane on which the 

force acts and the second subscript identifies the direction of the force.* For example, a tensile stress in the x- 

direction and it acts on a plane normal to x. For a 

components of stress are 

stress component σyy = Fy/Ay 
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describes the tensile stress in the y-direction. The stress component σzy = Fy/Az is the shear stress caused by a 

shear force in the y-direction acting on a plane normal to z. Repeated subscripts denote normal stresses (e.g., σxx, 

σyy, . . . ) whereas mixed subscripts denote shear stresses (e.g., σxy, σzx, . . . ). In tensor notation the state of stress 

is expressed as 
 

 
Where i and j are iterated over x, y, and z. Except where tensor notation is required, it is often simpler to use a 

single subscript for a normal stress and to denote a shear stress by τ ; for 

Example, 
 

 

 
STRAINS 

 
An infinitesimal normal strain is defined by the change of length, L, of a line: 

 

Integrating from the initial length, Lo, to the current length, L, 
 

This finite form is called true strain (or natural strain, logarithmic strain). Alternatively, engineering or 

nominal strain, e, is defined as 
 
 

If the strains are small, then engineering and true strains are nearly equal. Expressing ε = ln(L/Lo) = ln(1 + e) as 

a series expansion, ε = e − e2/2 + e3/3!− ·, so as e→ 0, ε →e. This is illustrated in the following example. 
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Example problem: Calculate the ratio e/ε for several values of e. 

Solution: e/ε = e/ln (1 + e). Evaluating: 

For e = 0.001, e/ε = 1.0005; 

For e = 0.01, e/ε = 1.005; 

For e = 0.02, e/ε = 1.010; 

For e = 0.05, e/ε = 1.025; 

For e = 0.10, e/ε = 1.049; 

For e = 0.20, e/ε = 1.097; 

For e = 0.50, e/ε = 1.233. 

Note that the difference between e and ε is less than 1% for e < 0.02. There are several reasons that true strains 

are more convenient than engineering strains. 

1. True strains for equivalent amounts of deformation in tension and compression are equal except for sign. 

2. True strains are additive. For a deformation consisting of several steps, the overall strain is the sum of the 

strains in each step. 

3. The volume change is related to the sum of the three normal strains. For constant volume, εx + εy + εz = 0. 

These statements are not true for engineering strains, as illustrated in the following examples. 

 
STRESS - STRAIN CURVES 

 
 
 

 
Figure . Typical engineering stress– strain curve for a ductile material 
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Figure. The low-strain region of the stress–strain curve for a ductile material 
 

 

Figure Inhomogeneous yielding of low carbon steel 
 
 

 
 

Figure Inhomogeneous yielding of a linear polymer 



 

 

 

Figure After a maximum on 
 

TRUE STRESS AND STRAIN 

TENSION TEST: 

The true stress is defined as 
 

Where, A is the instantaneous cross-sectional area

strain is given by 
 

The engineering stress is defined as the 

defined as the change in length divided 

along the gauge length, the true stress and

constant volume, 

LA=Lo Ao, so that 
 

and thus Ao/A=1+e Rewriting above Equation
 

Substitution of L/Lo =1+e into Equation (3.5)
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 the stress–strain curve, deformation localizes to

sectional area corresponding to the force F. Before 

 force divided by the original area, s=F/Ao, and 

 by the original length, e= L/Lo. As long as the 

and true strain can be calculated from the engineering

Equation as σ =(F/Ao)(Ao/A) and substituting Ao/A

(3.5) gives 

to form a neck. 

 necking begins, the true 

 the engineering strain is 

 deformation is uniform 

engineering quantities. With 

/A=1+e and s=F/Ao, 
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COMPRESSION TEST: 

 
The shape of the engineering stress–strain curve in compression can be predicted from the true stress–strain 

curve in tension, assuming that absolute values of true stress in tension and compression are the same at the 

same absolute strain values. Equations (3.7) and (3.8) apply, but it must be remembered that both the stress and 

strain are negative in compression, 

 

 

Figure Comparison of engineering and true stress–strain curves. Before necking, a point on the true stress– 

strain curve (σ–ε) can be constructed from a point on the engineering stress–strain curve (s–e) with Equations 

(3.7) and (3.8). After necking, the cross-sectional area at the neck must be measured to find the true stress and 

strain. 

 

Figure Stress–strain relations in compression for a ductile material. Each point σ, ε on the true stress–true strain 

curve corresponds to a point s, e on the engineering stress–strain curve. The arrows connect these points. 



 

 

 The engineering stress-strain curve does not give a true indication of the deformation characteristics of a

material because it is based entirely on the original dimensions of the specimen, and these dimensions

change continuously during the test.

 
 This definition of strain is satisfactory

 However, in plastic deformation the

length changes considerably.

 Ludwik first proposed the definition

 In this definition of strain the change

to the original gage length.
 
 

 
Or, 

 

 
 The relationship between true strain

 

 

 Values of true strain and conventional
 

 True stress is the load at any instant

 The engineering stress, or conventional

 True stress will be denoted by the
 

True stress 

Engineering stress 
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strain curve does not give a true indication of the deformation characteristics of a

material because it is based entirely on the original dimensions of the specimen, and these dimensions

test.

satisfactory for elastic strains where ∆L is very small.

deformation the strains are frequently large, and during the extension the

definition of true strain, or natural strain, ε, which obviates

change in length is referred ·to the instantaneous 

strain and conventional linear strain follows from previous

   
 

 
 

 
 

 

    
 

conventional linear strain are given for comparison:

instant divided by the cross-sectional area over which

conventional stress, is the load divided by the original

the familiar symbol σ, while engineering stress will

strain curve does not give a true indication of the deformation characteristics of a 

material because it is based entirely on the original dimensions of the specimen, and these dimensions 



extension the gage 

obviates this difficulty.

 gage length, rather than 

previous relationship.

over which it acts.

original area.

will be denoted by s.



The true stress may be determined
 

 

 

 

But, by the constancy-of-volume

From above eq.: 

 
 

HYDROSTATIC AND DEVIATOR COMPONENTS

 
 The total stress tensor can be divided into a hydrostatic or mean stress tensor am, which involves only

pure tension or compression, and a deviator stress tensor 

total state of stress (Fig. 2-18).
 
 

Figure 2-18 Resolution

 The hydrostatic component of the

cause plastic deformation.

 Experiment shows that the yield stress of metals 

fracture strain is strongly influenced

 Because the stress deviator involves

 We shall see that the stress deviator

The hydrostatic or mean stress is
 
 

The decomposition of the stress tensor

determined from the engineering stress as follows: 
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volume relationships 

  

COMPONENTS OF STRESS 

The total stress tensor can be divided into a hydrostatic or mean stress tensor am, which involves only

pure tension or compression, and a deviator stress tensor , which represents the shear stresses in the

18 Resolution of total stress into hydrostatic stress and stress

the stress tensor produces only elastic volume changes

the yield stress of metals is independent of hydrostatic stress

influenced by hydrostatic stress.
involves the shearing stresses, it is important in causing

deviator is useful in formulating theories of yielding. 

is given by

tensor is given by 

The total stress tensor can be divided into a hydrostatic or mean stress tensor am, which involves only 

, which represents the shear stresses in the 

stress deviator 

changes and does not 

independent of hydrostatic stress, although the 

causing plastic deformation



Therefore, 
 

 

 

ELASTIC STRESS-STRAIN RELATIONS

 
 Equations of this nature are called

constitutive equations for elastic solids. Moreover, initially we shall

solids.

 The elastic stress is linearly related
 

Where E is the modulus of elasticity

Poisson's ratio 

 While a tensile force in the x direction

contraction in the transverse y and

 The transverse strain has been found

longitudinal direction. This is known

 Only the absolute value of v is used in calculations. For 

Stress-strain relations for a 3D state of

 The elastic stresses are small and

produce shear strain on the x, y, or z planes and that a shear stress t does not produce normal strains on

the x, y, or z planes.
Thus, 
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RELATIONS 

called constitutive equations. In this chapter 

constitutive equations for elastic solids. Moreover, initially we shall only consider isotropic elastic

related to elastic strain by means of the modulus of elasticity


elasticity in tension or compression 

direction produces an extension along that axis, it also

and z directions.

found by experience to be a constant fraction of the

known as Poisson's ratio, denoted by the symbol 

Only the absolute value of v is used in calculations. For most metals the values of v are close to 

of stress

and the material is isotropic, we can assume that normal

produce shear strain on the x, y, or z planes and that a shear stress t does not produce normal strains on

 we shall consider only 

only consider isotropic elastic 

elasticity (Hooke's law).

also produces a 

the strain in the 

 .

the values of v are close to 0.33. 

normal stress ox does not 

produce shear strain on the x, y, or z planes and that a shear stress t does not produce normal strains on 



 

 

By superposition of the components of strain

The shearing stresses acting on the unit cube
 

 The proportionality constant G is the modulus of elasticity 

Values of G are usually determined

 Still another elastic constant is the

modulus is the ratio of the hydrostatic

 Where -p is the hydrostatic pressure

Many useful relationships may be derived between the elastic constants E, G, , K. For example, if we add up

the three equations 

 

The term on the left is the volume strain 
 

 

Or 

Another important relationship is the expression
 

Many other relationships can be developed

For example, 

16 

strain in the x, y, and z directions 

cube produce shearing strains 

constant G is the modulus of elasticity in shear, or the modulus of

determined from a torsion test.

the bulk modulus or the volumetric modulus of

hydrostatic pressure to the dilatation that it produces.

pressure and is the compressibility. 

Many useful relationships may be derived between the elastic constants E, G, , K. For example, if we add up

 , and the term on the right is 3 . 

 

expression relating E, G, and . 

developed between these four isotropic elastic constants.

the modulus of rigidity. 

of elasticity K. The bulk 

produces.

Many useful relationships may be derived between the elastic constants E, G, , K. For example, if we add up 

constants. 



 

 

 

STRAIN ENERGY 

 The elastic strain energy U is the

elastic body.

 Essentially all the work performed

is recovered on the release of the

 Energy (or work) is equal to a force multiplied by

 In the deformation of an elastic body,

zero so that the average energy is equal

 This is also equal to the area under

For an elemental cube that is subjected to

by 

The strain energy per unit volume or strain
 

By the same type of reasoning, the strain

by 

 
 
 

CONTINUUM MECHANICS 

 
It should be recognized that the equations describing the state of stress or strain in a body are applicable to any

solid continuum, whether it be an elastic or plastic solid or a viscous fluid. Indeed, this body of knowledge is

often called continuum mechanics. The equations relating stress and strain are called 

because they depend on the material behavior.
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the energy expended by the action of external 

performed during elastic deformation is stored as elastic

the applied forces.

force multiplied by the distance over which it acts.

body, the force and deformation increase linearly

is equal to one-half of their product.

under the load-deformation curve.

subjected to only a tensile stress along the x axis, the elastic

 

strain energy density U0 is given by 

the strain energy per unit volume of an element subjected

 

It should be recognized that the equations describing the state of stress or strain in a body are applicable to any

solid continuum, whether it be an elastic or plastic solid or a viscous fluid. Indeed, this body of knowledge is

. The equations relating stress and strain are called 

behavior. 

 forces in deforming an 

elastic energy, and this energy 

acts.

linearly from initial values of 

elastic strain energy is given 

subjected to pure shear is given 

It should be recognized that the equations describing the state of stress or strain in a body are applicable to any 

solid continuum, whether it be an elastic or plastic solid or a viscous fluid. Indeed, this body of knowledge is 

. The equations relating stress and strain are called constitutive equations 



 

 

For example, 

 
 In a thin plate loaded in the plane

of the plate. The stress system will consist of two normal stresses    

stress condition in which the stresses

 For any state of  stress it is always

perpendicular to the planes on which the

stresses act. These planes are called the 

principal stresses. For two-dimensional plane stress there will be two principal stresses

occur at angles that are 90° apart (Fig. 2

be three principal stresses , and 

 According to convention, a1 is the algebraically greatest principal stress, while is the algebraically

smallest stress.

 The directions of the principal stresses are the principal axes 1, 2, and 3. Although in general the

principal axes 1, 2, and 3 do not coincide with the Cartesian

that are encountered in practice the two systems

deformation.

 The specification of the principal stresses and their direction provides

the state of stress at a point.

 
State of Stress in Three Dimensions

 
 The general three-dimensional state

point. This is called a tri-axial state

 If two of the three principal stresses

 While if all three principal stresses

 The determination of the principal stresses for a three

acting on an arbitrary Cartesian-

for the two-dimensional case.

 Figure 2-7 represents an elemental free body similar to that shown in Fig. 2

of area A. The plane JKL is assumed to be a principal plane cutting thro

principal stress acting normal to the

 Let l, m, n be the direction cosines of σ, that is, the cosines of the angles between σ and the x, y, and z

axes. Since the free body in Fig. 2

balance.

The components of σ along each of the axes

 
, 
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plane of the plate there will be no stress acting perpendicular

of the plate. The stress system will consist of two normal stresses     and      and a shear stress     

stresses are zero in one of the primary directions is called

always possible to define a new coordinate system

perpendicular to the planes on which the maximum normal stresses act and on which

stresses act. These planes are called the principal planes, and the stresses normal to these planes are the

dimensional plane stress there will be two principal stresses

occur at angles that are 90° apart (Fig. 2-4). For the general case of stress in three dim

 . 

According to convention, a1 is the algebraically greatest principal stress, while is the algebraically

The directions of the principal stresses are the principal axes 1, 2, and 3. Although in general the

principal axes 1, 2, and 3 do not coincide with the Cartesian-coordinate axes x, y, z, for many situations

that are encountered in practice the two systems of axes coincide because of symmetry of loading and

The specification of the principal stresses and their direction provides a convenient

Dimensions 

state of stress consists of three unequal principal

state of stress.

stresses are equal, the state of stress is known as cylindrical,

stresses are equal, the state of stress is said to be hydrostatic

The determination of the principal stresses for a three-dimensional state of stress in terms of the stresses

-coordinate system is an extension of the method described

7 represents an elemental free body similar to that shown in Fig. 2-1 with a diagonal plane JKL

of area A. The plane JKL is assumed to be a principal plane cutting through the unit cube; σ is the

the plane JKL.

be the direction cosines of σ, that is, the cosines of the angles between σ and the x, y, and z

axes. Since the free body in Fig. 2-7, must be in equilibrium, the forces acting on each of its faces must

the axes are Sx, Sy and Sz 

perpendicular to the surface 

and a shear stress      . A 

called plane stress.

system which has axes

and on which no shearing 

, and the stresses normal to these planes are the 

dimensional plane stress there will be two principal stresses and which 

in three dimensions there will 

According to convention, a1 is the algebraically greatest principal stress, while is the algebraically 

The directions of the principal stresses are the principal axes 1, 2, and 3. Although in general the 

coordinate axes x, y, z, for many situations 

of axes coincide because of symmetry of loading and 

a convenient way of describing 

principal stresses acting at a 

cylindrical,

hydrostatic or spherical.

dimensional state of stress in terms of the stresses 

an extension of the method described in Sec. 2-3 

1 with a diagonal plane JKL 

ugh the unit cube; σ is the 

be the direction cosines of σ, that is, the cosines of the angles between σ and the x, y, and z 

7, must be in equilibrium, the forces acting on each of its faces must 



 

 

Area KOL = AI Area

Taking the summation of the forces in the

This reduces to, 

Summing the forces along the other two 
 

Equations (2-13) are three homogeneous linear equations in terms of /, m,

can be obtained by setting the determinant of the coefficients of l, m, and n equal to zero, since l, w, and n

cannot all be zero. 

Solution of the determinant results in a cubic
 

 

The three roots of Eq. (2-14) are the three principal stresses   

respect to the original x, y, z axes, in which the principal stresses act, it is necessary to substitute, o , and o each

in turn into the three equations of Eq. (2

and n with the help of the auxiliary relationship

Note that there are three combinations of stress components

of the cubic equation. Since the values of these Coefficients determine the principal stresses, they obviously do

not vary with Changes in the coordinate 
 

  
 

 
The first invariant of stress  has been seen before for the two

relationship that the sum of the normal stresses for any orientation in the coordinate system is equal to the sum

of the normal stresses for any other orientation.

For example 
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Area JOK = Am Area JOL = An

the x direction results in 

 

 
 

 
 

 
 

 
 

 axes results in 

13) are three homogeneous linear equations in terms of /, m, and n. The only nontrivial solution

can be obtained by setting the determinant of the coefficients of l, m, and n equal to zero, since l, w, and n

  

 

 
cubic equation in . 

14) are the three principal stresses    ,     , and     To determine the direction, with

respect to the original x, y, z axes, in which the principal stresses act, it is necessary to substitute, o , and o each

ee equations of Eq. (2-13). The resulting equations must be solved simultaneously for l, m,

relationship l2 + m2 + n2 = 1. 

Note that there are three combinations of stress components in Eq. (2-14) that 

of the cubic equation. Since the values of these Coefficients determine the principal stresses, they obviously do

 axes. Therefore, they are invariant coefficients. 

   
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

has been seen before for the two-dimensional state of stress. It states the useful

rmal stresses for any orientation in the coordinate system is equal to the sum

orientation. 

An 

and n. The only nontrivial solution 

can be obtained by setting the determinant of the coefficients of l, m, and n equal to zero, since l, w, and n 

To determine the direction, with 

respect to the original x, y, z axes, in which the principal stresses act, it is necessary to substitute, o , and o each 

13). The resulting equations must be solved simultaneously for l, m, 

make up the coefficients 

of the cubic equation. Since the values of these Coefficients determine the principal stresses, they obviously do 

 

dimensional state of stress. It states the useful 

rmal stresses for any orientation in the coordinate system is equal to the sum 



 

 

Stress Tensor 

 
 Many aspects of the analysis of stress,

components from one set of coordinate axes to another coordinate system or the existence of principal

stresses, become simpler when it

 Many of the techniques for manipulating second

tensor calculus, so it is advantageous

 We shall start with the consideration of the transformation of

coordinate system to another.

 
Consider the vector 

 When the unit vectors i1, i2, i3 are in the directions S

convenience in working with tensor quantities, the coordinate axes will be designated x

equivalent to our previous designation

 S1, S2, S3 are the components of S referred to

referred to the axes, Fig. 11. S
 

 

 
Figure 

 
 

Or, 
 

Where is the direction cosine between
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of stress, such as the equations for the transformation

components from one set of coordinate axes to another coordinate system or the existence of principal

it is realized that stress is a second-rank tensor quantity.

techniques for manipulating second-rank tensors do not require a deep understanding of

advantageous to learn something about the properties of tensors.

consideration of the transformation of a vector (a first

are in the directions S1, S2, S3 (In accordance with convention and

convenience in working with tensor quantities, the coordinate axes will be designated x

previous designation x, x2 is equivalent to the old y, etc.)

referred to the axes x1, x2, x3. We now want to find

11. S is obtained by resolving S1, S2, S3 along the 

 2-9 Transformation of axes for a vector 

between and , is the direction cosine between

transformation of the stress 

components from one set of coordinate axes to another coordinate system or the existence of principal 

quantity.

rank tensors do not require a deep understanding of 

tensors.
vector (a first-rank tensor) from one 

(In accordance with convention and 

convenience in working with tensor quantities, the coordinate axes will be designated x1, x2, etc., where x1 is 

find the components of S 

 new direction .

between and etc., similarly 



 

 

We note that the leading suffix for each

equations as 

        

These three equations could be combined by

Still greater brevity is obtained by writing Eq.

 The suffix notation is a very useful way of compactly expressing the systems of equations usually found in

continuum mechanics. In Eq. (2-24) it

this case the suffix j), it indicates summation with respect to that suffix. Unless otherwise indicated, the

summation of the other index is from

 In the above example, I is a free suffix and it is understood that in the expanded form there is one equation

for each value of i. The repeated index is called a dummy suffix. Its only purpose is to indicate summation.

Exactly the same three equations woul

for example,        would mean

 We saw in Sec. 2-5 that the complete determination of the state of stress at a point in a solid requires the

specification of nine components of stress on the orthogonal faces of the element at the point. A vector

quantity only requires the specification of three components. Obviously, stress is more complicated than a

vector.

 Physical quantities that transform with coordinate axes in the manner of Eq. (2

second rank.

 Stress, strain, and many other physical quantities are second

unchanged with transformation of axes, requires only a singl

tensors of zero rank.

 Vector quantities require three components

 The number of components required to specify a quantity is , where n is the rank of the tensor. The elastic

constant that relates stress with strain in an elastic solid is a fourth

general case.

Stress Tensor : The stress (force per unit area) at a point in fluid needs nine components to be completely

specified, since each component of the stress must be depend not only by the direction in which it acts but also

the orientation of the surface upon which it is acting. 

component acts, and the second identifies

 component of the force acting on a surface
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each direction cosine in each equation is the same, 

   ,         ,        
combined by writing 

writing Eq. (2-23) in the Einstein suffix notation 

 

 
 

The suffix notation is a very useful way of compactly expressing the systems of equations usually found in

24) it is understood that when a suffix occurs twice in the same

ase the suffix j), it indicates summation with respect to that suffix. Unless otherwise indicated, the

from 1 to 3.

In the above example, I is a free suffix and it is understood that in the expanded form there is one equation

for each value of i. The repeated index is called a dummy suffix. Its only purpose is to indicate summation.

Exactly the same three equations would be produced if some other letter were used

mean the same thing as Eq. (2-24).

5 that the complete determination of the state of stress at a point in a solid requires the

specification of nine components of stress on the orthogonal faces of the element at the point. A vector

quantity only requires the specification of three components. Obviously, stress is more complicated than a

ith coordinate axes in the manner of Eq. (2-18) are called tensors of the

Stress, strain, and many other physical quantities are second-rank tensors. A scalar quantity, which remains

unchanged with transformation of axes, requires only a single number for its specification. Scalars are

components for their specification, so they are tensors

The number of components required to specify a quantity is , where n is the rank of the tensor. The elastic

constant that relates stress with strain in an elastic solid is a fourth-rank tensor with 81 components in the

tress (force per unit area) at a point in fluid needs nine components to be completely

specified, since each component of the stress must be depend not only by the direction in which it acts but also

the orientation of the surface upon which it is acting. The first index specifies the direction in which the stress

identifies the orientation of the surface upon which it 

surface whose outward normal points in the   direction

 so we could write these 

The suffix notation is a very useful way of compactly expressing the systems of equations usually found in 

is understood that when a suffix occurs twice in the same term (in 

ase the suffix j), it indicates summation with respect to that suffix. Unless otherwise indicated, the 

In the above example, I is a free suffix and it is understood that in the expanded form there is one equation 

for each value of i. The repeated index is called a dummy suffix. Its only purpose is to indicate summation. 

d be produced if some other letter were used for the dummy suffix, 

5 that the complete determination of the state of stress at a point in a solid requires the 

specification of nine components of stress on the orthogonal faces of the element at the point. A vector 

quantity only requires the specification of three components. Obviously, stress is more complicated than a 

18) are called tensors of the 

rank tensors. A scalar quantity, which remains 

e number for its specification. Scalars are 

tensors of the first rank.

The number of components required to specify a quantity is , where n is the rank of the tensor. The elastic 

rank tensor with 81 components in the 

tress (force per unit area) at a point in fluid needs nine components to be completely 

specified, since each component of the stress must be depend not only by the direction in which it acts but also 

The first index specifies the direction in which the stress 

 is acting. Therefore, the 

direction is 



 

 

 

 
 

 

 

An example of surface forces is the shear force and an example of volumetric forces is the gravity force. At

equilibrium, the surface forces and volumetric forces are in balance. As the body gets smaller, the mass of the

body goes to zero, which makes the volumetric forces equal to zero and leaving the sum of the surface forces

equal zero. So, as          ;            

 
FLOW CURVES IN DUCTILE MATERIALS:

 
 The true stress-strain curve for a typical

 Hooke's law is followed up to some

which strain is measured.)

 Beyond , the metal deforms plastically.

 Most metals strain-harden in this region,

initial yield stress .
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An example of surface forces is the shear force and an example of volumetric forces is the gravity force. At

equilibrium, the surface forces and volumetric forces are in balance. As the body gets smaller, the mass of the

body goes to zero, which makes the volumetric forces equal to zero and leaving the sum of the surface forces

         for i = 1, 2, 3. 

MATERIALS: 

typical ductile metal, such as aluminum, is illustrated

some yield stress . (The value of will depend 

plastically.

region, so that increases in strain require higher values

An example of surface forces is the shear force and an example of volumetric forces is the gravity force. At 

equilibrium, the surface forces and volumetric forces are in balance. As the body gets smaller, the mass of the 

body goes to zero, which makes the volumetric forces equal to zero and leaving the sum of the surface forces 

illustrated in Fig. 3-l(a).

 upon the accuracy with 

values of stress than the 



 

 

 However, unlike the situation in the elastic

constant of proportionality. If the metal is strained to point A, when the load is released the total strain will

immediately decrease from     to      

 The strain decrease - is the recoverable

permanent plastic strain.

 Depending upon the metal and the temperature, a small amount of the plastic strain    

with time. This is known as anelastic behavior. Generally the anelastic strain is neglected in mathematical

theories of plasticity.
 

 Usually the stress-strain curve on unloading from a plastic strain will not be exactly linear and parallel to the

elastic portion of the curve (Fig. 3-1(b)).

 Moreover, on reloading the curve will generally bend over as the stress approaches the original value of

stress from which it was unloaded. With a little additional plastic strain the stress

continuation of what it would have been

 The hysteresis behavior resulting from unloading and loading from a plastic strain is generally neglected in

plasticity theories.

 If a specimen is deformed plastically beyond the yield stress in one direction, e.g., in tension, and then after

unloading to zero stress it is reloaded in the opposite direction, e.g., in compression, it is found that the yield

stress on reloading is less than the original

 Referring to Fig. 3-l (c),     <    . This dependence of the yield stress on loading path and direction is called

the Bauschinger effect.

 The Bauschinger effect is commonly ignored in plasticity theory, and it is usual to assume that the yield

stress in tension and compression are
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in the elastic region, the stress and strain are not

constant of proportionality. If the metal is strained to point A, when the load is released the total strain will

 by an amount .

recoverable elastic strain. However, the strain 

Depending upon the metal and the temperature, a small amount of the plastic strain    

with time. This is known as anelastic behavior. Generally the anelastic strain is neglected in mathematical

strain curve on unloading from a plastic strain will not be exactly linear and parallel to the

1(b)).

Moreover, on reloading the curve will generally bend over as the stress approaches the original value of

stress from which it was unloaded. With a little additional plastic strain the stress

been had no unloading taken place.

The hysteresis behavior resulting from unloading and loading from a plastic strain is generally neglected in

If a specimen is deformed plastically beyond the yield stress in one direction, e.g., in tension, and then after

unloading to zero stress it is reloaded in the opposite direction, e.g., in compression, it is found that the yield

original yield stress.

l (c),     <    . This dependence of the yield stress on loading path and direction is called

The Bauschinger effect is commonly ignored in plasticity theory, and it is usual to assume that the yield

compression are the same.

strain are not related by any simple 

constant of proportionality. If the metal is strained to point A, when the load is released the total strain will 

 remaining is not all 

Depending upon the metal and the temperature, a small amount of the plastic strain     -     will disappear 

with time. This is known as anelastic behavior. Generally the anelastic strain is neglected in mathematical 

strain curve on unloading from a plastic strain will not be exactly linear and parallel to the 

Moreover, on reloading the curve will generally bend over as the stress approaches the original value of 

stress from which it was unloaded. With a little additional plastic strain the stress-strain curve becomes a 

The hysteresis behavior resulting from unloading and loading from a plastic strain is generally neglected in 

If a specimen is deformed plastically beyond the yield stress in one direction, e.g., in tension, and then after 

unloading to zero stress it is reloaded in the opposite direction, e.g., in compression, it is found that the yield 

l (c),     <    . This dependence of the yield stress on loading path and direction is called 

The Bauschinger effect is commonly ignored in plasticity theory, and it is usual to assume that the yield 



 

 

YIELDING CRITERIA FOR DUCTILE

 
 The problem of deducing mathematical relationships for predicting the conditions at which plastic yielding

begins when a material is subjected to any possible combination of stresses is an important consideration in

the field of plasticity.

 The yielding criteria are essentially empirical relationships. However, a yield criterion must be consistent

with a number of experimental observations, the chief of which is that pure hydrostatic pressure does not

cause yielding in a continuous solid.

 As a result of this, the hydrostatic component of a complex state of stress does not influence the stress at

which yielding occurs. Therefore, we look for the stress deviator to be involved with yielding. Moreover, for

an isotropic material, the yield crit

invariant function.

 These considerations lead to the conclusion that the yield criteria must be some function of the invariants of

the stress deviator. At present there are two generally 

ductile metals.

1. Von Mises' or Distortion-Energy

2. Maximum-Shear-Stress or Tresca

 
VON MISES' OR DISTORTION-ENERGY

Von Mises (1913) proposed that yielding would

exceeded some critical value. 

Where, 

  

To evaluate the constant k and relate it

tension = , = = 0 

 

Substituting Eq. (3-11) in Eq. (3-10) results

  
 

Or, from Eq. (2-61) 
 

Equation (3-12) or (3-13) predicts that yielding

the equation exceed the yield stress in uniaxial

To identify the constant k in Eq. (3-10), 
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DUCTILE MATERIALS: 

The problem of deducing mathematical relationships for predicting the conditions at which plastic yielding

begins when a material is subjected to any possible combination of stresses is an important consideration in

iteria are essentially empirical relationships. However, a yield criterion must be consistent

with a number of experimental observations, the chief of which is that pure hydrostatic pressure does not

solid.

As a result of this, the hydrostatic component of a complex state of stress does not influence the stress at

which yielding occurs. Therefore, we look for the stress deviator to be involved with yielding. Moreover, for

an isotropic material, the yield criterion must be independent of the choice of axes, i.e., it must be an

These considerations lead to the conclusion that the yield criteria must be some function of the invariants of

the stress deviator. At present there are two generally accepted criteria for predicting the onset of yielding in

Energy Criterion 

Tresca Criterion 

ENERGY CRITERION: 

yielding would occur when the second invariant of the

it to yielding in the tension test, we realize that

results in the usual form of the Von Mises' yield criterion

yielding will occur when the differences of stresses

uniaxial tension . 

 consider the state of stress in pure shear, as is produced

The problem of deducing mathematical relationships for predicting the conditions at which plastic yielding 

begins when a material is subjected to any possible combination of stresses is an important consideration in 

iteria are essentially empirical relationships. However, a yield criterion must be consistent 

with a number of experimental observations, the chief of which is that pure hydrostatic pressure does not 

As a result of this, the hydrostatic component of a complex state of stress does not influence the stress at 

which yielding occurs. Therefore, we look for the stress deviator to be involved with yielding. Moreover, for 

erion must be independent of the choice of axes, i.e., it must be an 

These considerations lead to the conclusion that the yield criteria must be some function of the invariants of 

accepted criteria for predicting the onset of yielding in 

 stress deviator  

that at yielding in uniaxial 

criterion 

stresses on the right side of 

produced in a torsion test. 



 

 

 
 

 
 

   
  

At
 

So that k represents the yield stress in pure

yield stress in torsion will be less than in

To summarized, note that the Von Mises’

stress or shear stress, but instead, yielding

Since the yield criterion is based on differences

the component of hydrostatic stress. 

Since the von Mises' yield criterion involves squared terms, the result

individual stresses. This is an important advantage since it is not necessary to know which are the largest and

smallest principal stresses in order to use

 
MAXIMUM-SHEAR-STRESS OR TRESCA

 
This yield criterion assumes that yielding occurs when the maximum shear stress reaches the value of the shear

stress in the uniaxial-tension test. From Eq.

Where al is the algebraically largest and 

For uniaxial tension,    =   ,      =   = 0,

20), 

Therefore, the maximum-shear-stress criterion is
 

For a state of pure shear,     = -     = k,    

occur when 

 

So that the maximum-shear-stress criterion
 

Note that the maximum shear stress criterion is

and for this reason it is often used in engineering

However, the maximum shear criterion does
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At yielding 

in pure shear (torsion). Therefore, the Von Mises' criterion

in uniaxial tension according to 
 

 
 

 
 

 
 

Mises’ yield criterion implies that is not depend on

yielding depend on a function of all three values of principal

differences of normal stresses, - , etc., the criterion is independent of

yield criterion involves squared terms, the result is independent

individual stresses. This is an important advantage since it is not necessary to know which are the largest and

use this yield criterion. 

TRESCA CRITERION 

This yield criterion assumes that yielding occurs when the maximum shear stress reaches the value of the shear

Eq. (2-21), the maximum shear stress is given by

 o3 is the algebraically smallest principal stress 

0, and the shearing yield stress     is equal to

criterion is given by 

= k,     = 0, the maximum-shear-stress criterion predicts that yielding will

 

 
 

    

 
 

 
criterion may be written 

criterion is lass complicated mathematically than the

engineering design. 

does not take into consideration the intermediate principal

criterion predicts that the 

on any particular normal 

principal shearing stress. 

, etc., the criterion is independent of 

is independent of the sign of the 

individual stresses. This is an important advantage since it is not necessary to know which are the largest and 

This yield criterion assumes that yielding occurs when the maximum shear stress reaches the value of the shear 

by 

 

. Substituting in Eq. (3- 

stress criterion predicts that yielding will 

the von Mises’ criterion 

intermediate principal stress. 



 

 

It suffers from the major difficulty that it

minimum principal stresses 

Moreover, the general form of the maximum

von Mises' criterion, Eq (3-10), and for this

 

Figure 3-5 Comparison
 
 

PLASTIC DEFORMATION OF SINGLE
 

 Following the discovery of the diffraction of x

realization that metals were fundamentally composed of atoms arranged in specific geometric lattices

there have been a great many investigations of the re

behavior of metals.

 The dislocation theory, which plays

 
CONCEPTS OF CRYSTAL GEOMETRY

 
 X-ray diffraction analysis shows

three-dimensional pattern.

 The atom arrangement of metals

visualized as hard balls located at

 The most elementary crystal structure

 This is the type of structure cell found

 Three mutually perpendicular axes
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it is necessary to know in advance which the maximum

maximum-shear-stress criterion, Eq. (3-23), is far more

this reason the von Mises' criterion is preferred in

Comparison of yield criteria for plane stress. 

SINGLE CRYSTALS 

Following the discovery of the diffraction of x-rays by metallic crystals by Von Laue in 1912 and the

realization that metals were fundamentally composed of atoms arranged in specific geometric lattices

there have been a great many investigations of the relationships between atomic structure and the plastic

plays such an important part in modem concepts of

GEOMETRY 

shows that the atoms in a metal crystal are arranged

metals is most simply portrayed by a crystal lattice 

at particular locations in a geometrical arrangement.

structure is the simple cubic lattice (Fig. 4-1).

found for ionic crystals, such as NaCl and LiF.

axes are arbitrarily placed through one of the comers

maximum are and 

more complicated than the 

in most theoretical work. 

rays by metallic crystals by Von Laue in 1912 and the 

realization that metals were fundamentally composed of atoms arranged in specific geometric lattices 

lationships between atomic structure and the plastic 

of plastic deformation.

arranged in a regular, repeated 

 in which the atoms are 

arrangement.



the comers of the cell.
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 Crystallographic planes and directions will be specified with respect to these axes in terms of Miller 

indices.
 A crystallographic plane is specified in terms of the length of its intercepts on the three axes, measured 

from the origin of the coordinate axes.

 To simplify the crystallographic formulas, the reciprocals of these intercepts are used.

 They are reduced to a lowest common denominator to give the Miller indices (hkl) of the plane.
 

 For example, the plane ABCD in Fig. 4-1 is parallel to the x and z axes and intersects the y axis at one 

interatomic distance a0.
 Therefore, the indices of the plane are 1/00, 1/1, 1/00, or (hkl) = (010).

 Plane EBCF would be designated as the (100) plane, since the origin of the coordinate system can be 

moved to G because every point in a space lattice has the same arrangement of points as every other 

point.

 The bar over one of the integers indicates that the plane intersects one of the axes in a negative direction.

 There are six crystallographically equivalent planes of the type (100), anyone of which can have the 

indices (100), (010), (001), (100), (010), (001) depending upon the choice of axes.

 The notation {100} is used when they are to be considered as a group, or family of planes.
 Crystallographic directions are indicated by integers in brackets: [uvw].
 Reciprocals are not used in determining directions. As an example, the direction of the line FD is 

obtained by moving out from the origin a distance ao along the x axis and moving an equal distance in 

the positive y direction.

 The indices of this direction are then [110].

 A family of crystallographically equivalent directions would be designated <uvw>.
 For the cubic lattice only, a direction is always perpendicular to the plane having the same indices.

 Many of the common metals have either a body-centered cubic (bcc) or face-centered cubic (fcc)
crystal structure. 



 

 

 Figure 4-2a shows a body-centered

the body center of the cube.

 
 
 
 
 
 
 
 
 
 





 Each corner atom is surrounded by

 Therefore, there are two atoms per

 Typical metals which have this 

molybdenum, and tungsten.
 Figure 4-2b shows the structure cell

each corner, there is an atom at the

 Since these latter atoms belong to

centered cubic structure . 

 Aluminum, copper, gold, lead, 

 
For cubic systems there is a set of simple

very useful. 

 
1. [uvw] is normal to (hkl) when u =

2. [uvw] is parallel to (hkl), i.e., [uvw]

3. Two planes (h1k1l1) and (h2k2l2 ) 

(010). (110) is perpendicular to (110).

4. Two directions u1v1w1 and u2v2w

[111] is perpendicular to [112]. 

5. Angles between planes (h1k1l1) and 
 
 

 The third common metallic crystal
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centered cubic structure cell with an atom at each corner

surrounded by eight adjacent atoms, as is the atom located at the

per structure cell for the body-centered cubic structure

 crystal structure are alpha iron, columbium, 

cell for a face-centered cubic crystal structure. In

the center of each of the cube faces.

to two unit cells, there are four atoms per structure

 silver, and nickel are common face centered cubic metals.

simple relationships between a direction [uvw] and 

= h; v = k; w = l. [111] is normal to (111). 

[uvw] lies in (hkl), when hu + kv + lw = 0. [112] is 

 are normal if h1h2 + k1k 2 + l1l2 = 0. (001) is perpendicular

(110). 

w2 are normal if u1u2+ v1v2 + w1w2 = 0. [100] is perpendicular

and (h2k2l2 )are given by 

crystal structure is the hexagonal close-packed (hcp)

corner and another atom at 

at the center of the cell.

structure .

 tantalum, chromium, 

In addition to an atom at 

structure cell in the face-

cubic metals.

 a plane (hkl) which are 

 a direction in (111). 

perpendicular to (100) and 

perpendicular to [001]. 

packed (hcp) structure (Fig. 4-3).
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 In order to specify planes and directions in the hcp structure, it is convenient to use the Miller-Bravais 

system with four indices of the type (hkil).
 These indices are based on four axes; the three axes a1, a2, a3 are 1200 apart in the basal plane, and the 

vertical c axis is normal to the basal plane.

 The third index is related to the first two by the relation i = - (h + k).
 
 

The face-centered cubic and hexagonal close-packed structures can both be built up from a stacking of close- 

packed planes of spheres. Figure 4-4 shows that I there are two ways in which the spheres can be stacked. 
 
 

 
 The first layer of spheres is arranged so that each sphere is surrounded by and just touching six other 

spheres.

 This corresponds to the solid circles in Fig. 4-4.

 A second layer of close-packed spheres can be placed over the bottom layer so that the centers of the 

atoms in the second plane cover one-half the number of valleys in the bottom layer (dashed circles in 

Fig. 4-4).



 

 

 There are two ways of adding spheres to give a third close

third layer must fit into the valleys in the second plane, they may lie either over the valleys not covered

in the first plane (the dots in Fig. 4

4).

 The first possibility results in a stacking sequence 

an fcc structure.

 The other possibility results in the stacking sequence 

plane of the hcp structure.

 For the ideal hcp packing, the ratio  

Table 4-1 shows that actual hcp metals deviate
 
 

 The fcc and hcp structures are both

 74 % of the volume of the unit 

structures.

 This is contrasted with 68 % packing

 52 % of the volume occupied by

 
LATTICE DEFECTS 

 
 While the concept of the perfect 

metals.

 For a better understanding of the

number of types of lattice defects.
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There are two ways of adding spheres to give a third close-packed plane. Although the spheres in the

third layer must fit into the valleys in the second plane, they may lie either over the valleys not covered

in the first plane (the dots in Fig. 4-4) or directly above the atoms in the first plane (the crosses in Fig. 4

The first possibility results in a stacking sequence ABCABC…..which is found for the {111} planes of

in the stacking sequence ABAB…..which is found

ratio   is    or 1.633.
 

deviate from the ideal ratio. 
 

both close-packed structures.

 cell is occupied by atoms, on a hard sphere model,

packing for a bcc unit cell.

by atoms in the simple cubic unit cell.

 lattice is adequate for explaining the structure-

the structure-sensitive properties it has been necessary

defects.

packed plane. Although the spheres in the 

third layer must fit into the valleys in the second plane, they may lie either over the valleys not covered 

rectly above the atoms in the first plane (the crosses in Fig. 4- 

which is found for the {111} planes of 

which is found for the (0001) basal 

model, in the fcc and hcp 

-insensitive properties of 

necessary to consider a 



 

 

 The term defect, or imperfection

lattice points.

 

 Low-angle boundaries and grain

 When the deviation from the periodic arrangement

atoms it is called a point defect, 

 However, if the defect extends through

imperfection.
 Lattice imperfections may be divided

 The edge and screw dislocations

encountered in metals. 

 The stacking fault between two 

sequences and twinned region of

 
POINT DEFECTS 
 A vacancy or vacant lattice site 

5a).
 In pure metals, small numbers 

thermodynamically stable at temperatures

 At equilibrium, the fraction of lattices

the equation.

 
 

 Where n is the number of vacant

interior of a crystal to its surface.

 An atom that is trapped inside the

called an interstitial atom, or interstitialcy

 The interstitial defect occurs in

particles (radiation damage), but 
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imperfection, is generally used to describe any deviation from

grain boundaries are surface defects.

periodic arrangement of the lattice is localized to the

 or point imperfection.
through microscopic regions of the crystal, it is 

divided into line defects and surface, or plane, defects

dislocations that are discussed in this section are the 

 close-packed regions of the crystal that have alternate

of a crystal are other examples of surface defects.

 exists when an atom is missing from a normal 

 of vacancies are created by thermal excitation,

temperatures greater than absolute zero.

lattices that are vacant at a given temperature is 

vacant sites in N sites and Es is the energy required to

its surface.

the crystal at a point intermediate between normal

interstitialcy (Fig. 4-5b).
in pure metals as a result of bombardment with

 it does not occur frequently as a result of thermal

from an orderly array of 

the vicinity of only a few 

 called a lattice 

plane, defects.
 common line defects

alternate stacking 

defects.

 lattice position (Fig. 4- 

excitation, and these are 

 given approximately by 

to move an atom from the 

normal lattice positions is 

with high-energy nuclear 

thermal activation.
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 The presence of an impurity atom at a lattice position (Fig. 4-5c) or at an interstitial position results in a 

local disturbance of the periodicity of the lattice, the same as for vacancies and interstitials.

 It is important to realize that no material is completely pure. Most commercially "pure" materials 

contain usually 0.01 to 1 percent impurities,

 While ultra purity materials, such as germanium and silicon crystals for transistors, contain purposely 

introduced foreign atoms on the order of one part in 1010.

 
LINE DEFECTS-DISLOCATIONS 

 
 The most important two-dimensional, or line, defect is the dislocation.
 The dislocation is the defect responsible for the phenomenon of slip, by which most metals deform 

plastically.

 In Fig. 4-6, AB represents a dislocation lying in the slip plane, which is the plane of the paper. It is 

assumed that slip is advancing to the right. All the atoms above area C have been displaced one atomic 

distance in the slip direction; the atoms above D have not yet slipped. AB is then the boundary between 

the slipped and unslipped regions.

 In the absence of obstacles, a dislocation can move easily on the application of only a small force.

 This helps explain why real crystals deform much more readily than would be expected for a crystal 

with a perfect lattice.

 Not only are dislocations important for explaining the slip of crystals, but they are also intimately 

connected with nearly all other mechanical phenomena such as strain hardening, the yield point, 

creep, fatigue, and brittle fracture.
 The two basic types of dislocations are the edge dislocation and the screw dislocation.

 

Figure Edge dislocation produced by slip in a simple cubic lattice. Dislocation lies along AD, perpendicular to 

slip direction. Slip has occurred over area ABCD. 

 Figure shows the slip that produces an edge dislocation for an element of crystal having a simple cubic 

lattice. Slip has occurred in the direction of the slip vector over the area ABCD. The boundary between 

the right-hand slipped part of the crystal and the left-hand part which has not yet slipped is the line AD, 

the edge dislocation.



 

 

 The amount of displacement is equal to the 

of an edge dislocation is that its 

 There is one more vertical row of atoms above the slip plane than below it. The atomic arrangement

results in a compressive stress above the

 An edge dislocation with the extra plane of atoms above the slip plane, as in Figure, by convention is

called a positive edge dislocation 

lies below the slip plane, the dislocation

 A pure edge dislocation can glide or slip in a direction perpendicular to

move vertically by a process known as 

appreciable rate.

 
Plastic Deformation of Single Crystals

Figure Atomic arrangement

 
 Although the exact arrangement of atoms along AD is not known, it is generally agreed that Fig. closely

represents the atomic arrangement in

 The plane of the paper in this figure corresponds to a (100) plane in a simple cubic lattice and is equivalent

to any plane parallel to the front face

 Note that the lattice is distorted in the region o

above the slip plane than below it. The atomic arrangement results in a compressive stress above the slip

plane and a tensile stress below the slip

 An edge dislocation with the extra plane o

positive edge dislocation and is frequently indicated by the symbol

the slip plane, the dislocation is a negative

 A pure edge dislocation can glide or slip in a direction perpendicular to its length. However, it may move

vertically by a process known as climb, if diffusion of atoms or vacancies can take place at an appreciable

rate.
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The amount of displacement is equal to the Burgers vector b of the dislocation. A defining characteristic

 Burgers vector is always perpendicular to the 

There is one more vertical row of atoms above the slip plane than below it. The atomic arrangement

above the slip plane and a tensile stress below the

An edge dislocation with the extra plane of atoms above the slip plane, as in Figure, by convention is

positive edge dislocation and is frequently indicated by the symbol ┴. If the extra plane of atoms

the dislocation is a negative edge dislocation, ┬.

A pure edge dislocation can glide or slip in a direction perpendicular to its length. However, it may

move vertically by a process known as climb, if diffusion of atoms or vacancies can take place at an

Crystals 

arrangement in a plane normal to an edge dislocation

Although the exact arrangement of atoms along AD is not known, it is generally agreed that Fig. closely

in a plane normal to the edge dislocation AD.

The plane of the paper in this figure corresponds to a (100) plane in a simple cubic lattice and is equivalent

face of previous Figure.

Note that the lattice is distorted in the region of the dislocation. There is one more vertical row of atoms

above the slip plane than below it. The atomic arrangement results in a compressive stress above the slip

the slip plane.

An edge dislocation with the extra plane of atoms above the slip plane, as in Fig., by convention is called a

positive edge dislocation and is frequently indicated by the symbol┴. If the extra plane of atoms lies below

negative edge dislocation, ┬.

A pure edge dislocation can glide or slip in a direction perpendicular to its length. However, it may move

vertically by a process known as climb, if diffusion of atoms or vacancies can take place at an appreciable

of the dislocation. A defining characteristic 

 dislocation line.

There is one more vertical row of atoms above the slip plane than below it. The atomic arrangement 

the slip plane.

An edge dislocation with the extra plane of atoms above the slip plane, as in Figure, by convention is 

If the extra plane of atoms 

its length. However, it may 

if diffusion of atoms or vacancies can take place at an 

dislocation 

Although the exact arrangement of atoms along AD is not known, it is generally agreed that Fig. closely 

The plane of the paper in this figure corresponds to a (100) plane in a simple cubic lattice and is equivalent 

f the dislocation. There is one more vertical row of atoms 

above the slip plane than below it. The atomic arrangement results in a compressive stress above the slip 

f atoms above the slip plane, as in Fig., by convention is called a 

┴. If the extra plane of atoms lies below 

A pure edge dislocation can glide or slip in a direction perpendicular to its length. However, it may move 

vertically by a process known as climb, if diffusion of atoms or vacancies can take place at an appreciable 
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 Consider Fig.. For the edge dislocation to move upward (positive direction of climb), it is necessary to 

remove the extra atom directly over the symbol ┴ or to add a vacancy to this spot.

 One such atom would have to be removed for every atomic spacing; which the dislocation climbs. 

Conversely, if the dislocation moved down, atoms would have to be added. Atoms could be removed from 

the extra plane of atoms by the extra atom interacting with a lattice vacancy.

 Atoms are added to the extra plane for negative climb by the diffusion of an atom from the surrounding 

crystal, creating a vacancy. Since movement by climb is diffusion controlled, motion is much slower than in 

glide and less likely except at high temperatures.
 

Figure Slip that produces a screw dislocation in a simple cubic lattice. Dislocation lies along AD, parallel to 

slip direction. Slip has occurred over the area ABCD. 

 

Figure Atomic arrangement around the screw dislocation shown in previous Fig.. The plane of the figure is 

parallel to the slip plane. A BCD is the slipped area, and AD is the screw dislocation. Open circles represent 

atoms in the atomic plane just above the slip plane, and the solid circles are atoms in the plane just below the 

slip plane. 

 
 The second basic type of dislocation is the screw, or Burgers, dislocation. Figure shows a simple 

example of a screw dislocation. The upper part of the crystal to the right of AD has moved relative to the 

lower part in the direction of the slip vector. No slip has taken place to the left of AD, and therefore AD 

is a dislocation line.
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 Thus, the dislocation line is parallel to its Burgers vector, or slip vector, and by definition this must be a 

screw dislocation. Consider the trace of a circuit around the dislocation line, on the front face of the 

crystal.

 Starting at X and completing a counterclockwise circuit, we arrive at X', one atomic plane behind that 

containing X. In making this circuit we have traced the path of a right-handed screw.

 Every time a circuit is made around the dislocation line, the end point is displaced one plane parallel to 

the slip plane in the lattice. Therefore, the atomic planes are arranged around the dislocation in a spiral 

staircase or screw.

 The arrangement of atoms (in two dimensions) around a screw dislocation in a simple cubic lattice is 

shown in Fig.

 In this figure we are looking down on the slip plane in Fig.. The open circles represent atoms just above 

the slip plane, and the solid circles are atoms just below the slip plane. A screw dislocation does not 

have a preferred slip plane, as an edge dislocation has, and therefore the motion of a screw dislocation is 

less restricted than the motion of an edge dislocation. However, movement by climb is not possible with 

a screw dislocation.

 
DEFORMATION BY SLIP 

 
 The usual method of plastic deformation in metals is by the sliding of blocks of the crystal over one 

another along definite crystallographic planes, called slip planes.

 As a very crude approximation, the slip, or glide of a crystal can be considered analogous to the 

distortion produced in a deck of cards when it is pushed from one end.
 
 

Figure illustrates this classical picture of slip. 

 In Fig. 4- 11a, a shear stress is applied to a metal cube with a top polished surface. Slip occurs when the 

shear stress exceeds a critical value.

 The atoms move an integral number of atomic distances along the slip plane, and a step is produced in 

the polished surface (Fig. 4-11b).
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 When we view the polished surface from above with a microscope, the step shows up as a line, which 

we call a slip line. If the surface is then repolished after slip has occurred, so that the step is removed, 

the slip line will disappear (Fig. 4-11c).

 Because of the translational symmetry of a crystal lattice, the crystal structure is perfectly restored after 

slip has taken place provided that the deformation was uniform.

 Note that slip lines are due to changes in surface elevation and that the surface must be suitably prepared 

for microscopic observation prior to deformation if the slip lines are to be observed. Figure 4-12 shows 

straight slip lines in copper.
 

 
 

The fine structure of slip lines has been studied at high magnification by means of the electron microscope. 

What appears as a line, or at best a narrow band at 1,500 diameters' magnification in the optical microscope can 

be resolved by the electron microscope as discrete slip lamellae at 20,000 diameters, shown schematically in 

Fig. 4-13. 
 
 
 

Figure Schematic drawing of the line structure of a slip band, (a) Small deformation; (b) large deformation 
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 Slip occurs most readily in specific directions on certain crystallographic planes.

 Generally the slip plane is the plane of greatest atomic density (Table 4-2) and the slip direction is the 

closest-packed direction within the slip plane.
 The slip plane together with the slip direction establishes the slip system

 
 

HCP System 

 
 In the hexagonal close-packed metals, the only plane with high atomic density is the basal plane 

(0001). The axes <1120> are the close-packed directions.

 For zinc, cadmium, magnesium, and cobalt slip occurs on the (0001) plane in the <1120> directions.1 

since there is only one basal plane per unit cell and three <1120> directions.

 The hcp structure possesses three slip systems.

 The limited number of slip systems is the reason for the extreme orientation dependence and low 

ductility in hcp crystals.
 Zirconium and titanium, which have low c/a ratios, slip primarily on the prism and pyramidal planes 

in the <1120> direction.

 
FCC System 

 
 In the face-centered cubic structure, the {111} octahedral planes and the <110> directions are the 

close-packed systems.

 There are eight {111} planes in the fcc unit cell. However, the planes at opposite faces of the
octahedron are parallel to each other, so that there are only four sets of octahedral planes. 

 Each {111} plane contains three <110> directions (the reverse directions being neglected).

 Therefore, the fcc lattice has 12 possible slip systems.

 
Example: 

Determine the slip systems for slip on a (111) plane in a fee crystal and sketch the result. 
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Slip direction in fee is <110> type direction. Slip directions are most easily established from a sketch of the 

(111) plane. 

To prove that these slip directions lie in the slip plane hu + kv + Iw – 0 
 
 

BCC System 

 
 The bcc structure is not a close-packed structure like the fcc or hcp structures. 

 Accordingly, there is no one plane of predominant atomic density, as (111) in the fcc structure and 

(0001) in the hcp structure. 

 The {110} planes have the highest atomic density in the bcc structure, but they are not greatly 

superior in this respect to several other planes. 

 However, in the bcc structure the (111) direction is just as close-packed as the (110) and (1120) 

directions in the fcc and hcp structures. 

 Therefore, the bcc metals obey the general rule that the slip direction is the close-packed direction, 

but they differ from most other metals by not having a definite single slip plane. 

 Slip in bcc metals is found to occur on the {110}, {112}, and {123} planes, while the slip direction is 

always the [111] direction. 

 There are 48 possible slip systems, but since the planes are not so close-packed as in the fcc structure, 

higher shearing stresses are usually required to cause slip. 

 Slip lines in bcc metals have a wavy appearance. 

 This is due to the fact that slip occurs on several planes, {110}, {112}, {123} but always in the close- 

packed (111) direction which is common to each of these planes. 

 Dislocations can readily move from one type of plane to another by cross sip, giving rise to the 

irregular wavy slip bands. 



 

 

Property at high temp: 

 
 Certain metals show additional 

{110} plane at elevated temperature,

important role in deformation by

 In all cases the slip direction remains

 
Slip in a perfect lattice 

 
 If slip is assumed to occur by the translation

reasonable estimate of the shear stress

 Consider two planes of atoms subjected to a homogeneous shear stress (Fig. 4

assumed to act in the slip plane along the slip direction. The distance between atoms in the slip directions is

b, and the spacing between adjacent lattice planes is 

direction between the pair of adjacent
 

Figure (a) Shear displacement of one plane

with displacement in slip direction. 

 
 The shearing stress is initially zero when the two planes are in coincidence, and it is also zero when the

two planes have moved one identity distance b, so that point 1 in the top plane is

bottom plane.

 The shearing stress is also zero when the atoms of the top plane are midway between those of the bottom

plane, since this is a symmetry position.

 Between these positions each atom is attracted toward the nearest atom of the other row, so that the

shearing stress is a periodic function

 
As a first approximation, the relationship

function 
 

Where the amplitude of the sine wave

should apply. 

39 

 slip systems with increased temperature. Aluminum

temperature, while in magnesium the {1011} pyramidal

by slip above 225 0C. 

remains the same when the slip plane changes with

translation of one plane of atoms over another, it is

stress required for such a movement in a perfect lattice.

Consider two planes of atoms subjected to a homogeneous shear stress (Fig. 4-

assumed to act in the slip plane along the slip direction. The distance between atoms in the slip directions is

, and the spacing between adjacent lattice planes is a. The shear stress causes a displacement 

adjacent lattice planes.

plane of atoms over another atomic plane; (b) variation

The shearing stress is initially zero when the two planes are in coincidence, and it is also zero when the

two planes have moved one identity distance b, so that point 1 in the top plane is

The shearing stress is also zero when the atoms of the top plane are midway between those of the bottom

position.

Between these positions each atom is attracted toward the nearest atom of the other row, so that the

function of the displacement.

relationship between shear stress and displacement can 

wave and b is is the period. At small values of displacement,

Aluminum deforms on the 

pyramidal plane plays an 

with temperature. 

is possible to make a 

lattice.

-14). The shear stress is 

assumed to act in the slip plane along the slip direction. The distance between atoms in the slip directions is 

. The shear stress causes a displacement x in the slip 

variation of shearing stress 

The shearing stress is initially zero when the two planes are in coincidence, and it is also zero when the 

two planes have moved one identity distance b, so that point 1 in the top plane is over point 2 on the 

The shearing stress is also zero when the atoms of the top plane are midway between those of the bottom 

Between these positions each atom is attracted toward the nearest atom of the other row, so that the 

 be expressed by a sine 

displacement, Hooke's law 



 

 

 

For small values of x/b, Eq. (4-2) can be written
 

Combining Eqs. (4-3) and (4-4) provides

occur. 
 

 As a rough 

theoretical shear strength of a perfect

by .

 The shear modulus for metals is in the range 20 to 150 GPa

theoretical shear stress will be in the

 While actual values of the shear stress

in the range 0.5 to 10 MPa.
 Even if more refined calculations are

made equal to the observed shear stress.

 Tyson, using a computer solution of

G/8 for an NaCl structure, and G/4 for

 Since the theoretical shear strength of metal crystals is at least 100 times greater than the observed shear

strength, it must be concluded that a mechanism other than bodily shearing of planes of atoms is responsible

for slip.

 In the next section it is shown that dislocations

 
Slip by Dislocation Movement 

 
 The concept of the dislocation was

theoretical shear strengths of metals.

 For the dislocation concept to be 

 (1) that the motion of a dislocation

theoretical shear stress, and

 (2) That the movement of the dislocation

 In a perfect lattice all atoms above

 When a shear stress is applied to 

atoms. This is the model for slip 
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be written 

provides an expression for the maximum shear stress

 approximation, b can be taken equal to a

of a perfect crystal is approximately equal to the shear

shear modulus for metals is in the range 20 to 150 GPa. Therefore, Eq. (4

the range (3 to 30 GPa),

stress required to produce, plastic deformation in 

are used to correct the sine-wave assumption, the value

stress.

of the interatomic force equations, predicted =

for a covalently bonded diamond structure.

Since the theoretical shear strength of metal crystals is at least 100 times greater than the observed shear

strength, it must be concluded that a mechanism other than bodily shearing of planes of atoms is responsible

dislocations provide such a mechanism.

dislocation was first introduced to explain the discrepancy between the

strengths of metals.

 valid it is necessary to show

dislocation through a crystal lattice requires a stress

dislocation produces a step, or slip band, at the free

above and below the slip plane are in minimum energy

 the crystal, the same force opposing the movement

 presented in Fig. 4-14.

stress at which slip should 

a, with the result that the 

equal to the shear modulus divided 

. Therefore, Eq. (4-6) predicts that the 

 metal single crystals are 

value of cannot be 

= G/16 for an fcc metal, 

Since the theoretical shear strength of metal crystals is at least 100 times greater than the observed shear 

strength, it must be concluded that a mechanism other than bodily shearing of planes of atoms is responsible 

between the observed and 

stress far smaller than the 

free surface.

energy positions.

movement acts on all the 
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 When there is a dislocation in the crystal, the atoms well away from the dislocation are still in the 

minimum energy positions but at the dislocation only a small movement of the atoms is required.

 Referring to Fig. 4-15a, the extra plane of atoms at the edge dislocation initially is at 4.

 Under the action of the shear stress, a very small movement of atoms to the right will allow this half 

plane to line up with the half plane 5', at the same time cutting the half plane 5 from its neighbors 

below the slip plane.

Figure (a) Atom movements near dislocation in slip; (b) movement of an edge dislocation. 

 By this process the edge dislocation line has moved from its initial position between planes 4' and 5' to a 

new position between planes 5' and 6'.

 Since the atoms around the dislocations are symmetrically placed on opposite sides of the extra half 

plane, equal and opposite forces oppose and assist the motion.

 Thus, in a first approximation there is no net force on the dislocation and the stress required to move the 

dislocation is zero.

 The continuation of this process under the stresses shown in Fig. 4-15 moves the dislocation to the right.

 When the extra half plane of atoms reaches a free surface (Fig. 4-15b), it results in a slip step of one 

Burgers vector, or one atomic distance for the simple cubic lattice.
 

 



 

 

Figure (a) Energy change from unslipped

 
 Slip by dislocation motion has been proposed by 

transition from an unslipped to a slipped state (Fig. 4

barrier , in order to facilitate the process it is logical to assume that the material will not all make the

transition simultaneously.

 To minimize the energetic of the process, the slipped material will grow at the expense of the unslipped

region by the advance of an interfacial

 To minimize the energy for the transition,

 The distance w is the width of the

 The smaller the width of the dislocation, the

the lower is the elastic energy of the crystal because then the atomic spacing in the Slip direction is

closer to its equilibrium spacing.

 Thus, the equilibrium width of the

energy changes.

 
PEIERLS-NABARRO FORCE 

 
 The dislocation width is important

through the crystal lattice.
 This force is called the Peierls - Nabarro

move a dislocation through a crystal
 

 Where a is 
is the distance between atoms in 

 Note that the dislocation width appears

be very sensitive to the atomic position

 These are not known with any high

sinusoidal force-distance law that

 The equation cannot be used for precise

stress needed to move a dislocation

 In spite of these limitations, the Peierls

with wide dislocations will require
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unslipped to slipped state; (b) stages in growth of slipped region.

Slip by dislocation motion has been proposed by Cottrell. Consider that plastic deformation is the

transition from an unslipped to a slipped state (Fig. 4-16(a). Since the process is opposed by an energy

barrier , in order to facilitate the process it is logical to assume that the material will not all make the

energetic of the process, the slipped material will grow at the expense of the unslipped

an interfacial region (Fig. 4-16b). The interfacial region is a

transition, we expect the interface thickness w to 

the dislocation.

dislocation, the lower is the interfacial energy, but the

the lower is the elastic energy of the crystal because then the atomic spacing in the Slip direction is

spacing.

the dislocation is determined by a balance between

important because it determines the force required to move

Nabarro force. The Peierls stress is the shear 

crystal lattice in a particular direction.

 the distance between
 the slip direction. 

appears in the exponential term in Eq. (4-7), so that

position at the core of a dislocation.

high degree of accuracy and, since Eq. (4-7) was derived

law that has only limited validity,

for precise calculations. However, it is accurate enough

dislocation in a metal is quite low.

Peierls equation has important conceptual value. 

require a low stress to move the dislocations.

slipped region. 

. Consider that plastic deformation is the 

16(a). Since the process is opposed by an energy 

barrier , in order to facilitate the process it is logical to assume that the material will not all make the 

energetic of the process, the slipped material will grow at the expense of the unslipped 

region is a dislocation.

 be narrow.

the wider the dislocation, 

the lower is the elastic energy of the crystal because then the atomic spacing in the Slip direction is 

between these two opposing 

move a dislocation 

 stress required to 

between slip planes and b

that the Peierls stress will 

derived for the 

enough to show that the 

 It shows that materials 



 

 

CRITICAL RESOLVED SHEAR 

 
The extent of slip in a single crystal depends

1. the magnitude of the shearing stress

2. the geometry of the crystal structure,

3. and the orientation of the active 

 Slip begins when the shearing stress

the critical resolved shear stress.

 This value is really the single-crystal

 The value of the critical resolved shear

 The fact that different tensile loads are required to produce slip in single crystals of different orientation can

be rationalized by a critical resolved 

 To calculate the critical resolved shear stress from a single crystal tested in tension, it is necessary to know,

from x-ray diffraction, the orientation with respect to the tensile axis of the plane on which slip first appears

and the slip direction.

Figure Diagram

 
 Consider a cylindrical single crystal with

 The angle between the normal to the 

direction makes with the tensile axis

 The area of the slip plane inclined at 

in the slip plane in the slip direction 

 
Therefore, the critical resolved shear stress

 

 Equation (4-13) gives the shear stress
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 STRESS FOR SLIP 

depends on 

stress produced by external loads, 

structure, 

 slip planes with respect to the shearing stresses 

stress on the slip plane in the slip direction reaches a

crystal equivalent of the yield stress of an ordinary stress

shear stress depends mainly on composition and temperature.

The fact that different tensile loads are required to produce slip in single crystals of different orientation can

 shear stress; this was first recognized by Schmid.

To calculate the critical resolved shear stress from a single crystal tested in tension, it is necessary to know,

ray diffraction, the orientation with respect to the tensile axis of the plane on which slip first appears

Diagram for calculating critical resolved shear stress.

with cross-sectional area A.

 slip plane and the tensile axis is and the angle

axis is .

 the angle will be A /cos and the component 

 is Pcos .

stress is given by: 

stress resolved on the slip plane in the slip direction

 

a threshold value called 

stress-strain curve.

temperature.

The fact that different tensile loads are required to produce slip in single crystals of different orientation can 

Schmid.
To calculate the critical resolved shear stress from a single crystal tested in tension, it is necessary to know, 

ray diffraction, the orientation with respect to the tensile axis of the plane on which slip first appears 

stress. 

angle which the slip 

 of the axial load acting 

direction.



 

 

] is 

 This shear stress is a maximum when

 If the tension axis is normal to the slip

resolved shear stress is zero.

 Slip will not occur for these extreme 

 Crystals close to these orientations tend

Example: 

Determine the tensile stress that is applied along

[0 1] system. The critical resolved shear

 
The angle between tensile axis [1 0] and

 
The angle between 

 
[1 0] and slip direction [0 

 
 

From Eq. (4-13) 
 
 

Property of CRSS 

 
 The importance of small amounts of impurities in

by the data for silver and copper.

 Alloying-element additions have even a greater effect, as shown by the data for gold

Fig..

Figure Variation of critical resolved

 
 Note that a large increase in the resistance to slip is produced by 

these atoms are very much alike in size and electro negativity, and hence they form a solid solution over

the complete range of composition.
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when = = 45°, so that = .

slip plane ( = 90°) or if it is parallel to the slip plane

 orientations since there is no shear stress on the

tend to fracture rather than slip.

applied along the [1 0] axis of a silver crystal to cause

shear stress is 6 MPa. 

0] and normal to (1 ) is 

 

The importance of small amounts of impurities in increasing the critical resolved shear stress is shown

copper.

element additions have even a greater effect, as shown by the data for gold

resolved shear stress with composition in silver-gold-

Note that a large increase in the resistance to slip is produced by alloying gold and silver 

these atoms are very much alike in size and electro negativity, and hence they form a solid solution over

composition.

slip plane ( = 90°), the 

the slip plane.

cause slip on the (1 ) 

 tensile axis 

increasing the critical resolved shear stress is shown 

element additions have even a greater effect, as shown by the data for gold-silver alloys in 

-alloy single crystals. 

alloying gold and silver even though 

these atoms are very much alike in size and electro negativity, and hence they form a solid solution over 



 

 

 In solid solutions, where the solute atoms differ considerably in size from the solvent atoms, an even

greater increase in critical resolved

 The magnitude of the critical resolved shear stress of a crystal is determined by the interaction of its

population of dislocations with each other and with defects such as vacancies, interstitials, and impurity

atoms.

 This stress is, of course, greater

appreciably lower than the stress 

 On the basis of this reasoning, the critical resolved shear stress should decrease as the density of defects

decreases, provided that the total

 
SCHMID LAW: 

 
 The ratio of the resolved shear stress

loaded in tension or compression

 It is observed experimentally that a single crystal will slip when the resolved shear stress on the slip

plane reaches a critical value. This behavior, known as 

metals where the limited number of slip syste

plane and the tensile axis.

 
Deformation of Single crystals 

 
 Most studies of the mechanical properties of single crystals are made by subjecting the crystal to simple

uniaxial tension.

 Therefore, the specimen is not permitted to deform freely by uniform glide on every slip plane along the

gage length of the specimen, as is pictured in Fig. 4

tensile axis since the tensile axis 

 Since plastic low occurs by slip on certain planes in particular directions, the measured increase in

length of the specimen for a given amount of slip will depend on the orientations of the slip plane and

direction with the specimen axis.

 The fundamental measure of plastic

 Glide strain is the relative displacement of two parallel slip planes separated at a unit distance. The

equations relating glide strain with
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In solid solutions, where the solute atoms differ considerably in size from the solvent atoms, an even

resolved shear stress would be observed.

The magnitude of the critical resolved shear stress of a crystal is determined by the interaction of its

population of dislocations with each other and with defects such as vacancies, interstitials, and impurity

greater than the stress required to move a single

 required to produce slip in a perfect lattice.

On the basis of this reasoning, the critical resolved shear stress should decrease as the density of defects

total number of imperfections is not zero.

shear stress to the axial stress is called the Schmid factor m.

compression along its axis, m = cos  cos .

It is observed experimentally that a single crystal will slip when the resolved shear stress on the slip

plane reaches a critical value. This behavior, known as Schmid's law, is best demonstrated with hcp

metals where the limited number of slip systems allows large differences in orientation between the slip

Most studies of the mechanical properties of single crystals are made by subjecting the crystal to simple

Therefore, the specimen is not permitted to deform freely by uniform glide on every slip plane along the

gage length of the specimen, as is pictured in Fig. 4-20(a). Instead, the slip planes rotate toward the

 of the specimen remains fixed, as in Fig. 4-20b

by slip on certain planes in particular directions, the measured increase in

length of the specimen for a given amount of slip will depend on the orientations of the slip plane and

axis.

plastic strain in a single crystal is the crystallographic

Glide strain is the relative displacement of two parallel slip planes separated at a unit distance. The

with specimen extension can be derived from Fig.

In solid solutions, where the solute atoms differ considerably in size from the solvent atoms, an even 

The magnitude of the critical resolved shear stress of a crystal is determined by the interaction of its 

population of dislocations with each other and with defects such as vacancies, interstitials, and impurity 

single dislocation, but it is 

On the basis of this reasoning, the critical resolved shear stress should decrease as the density of defects 

factor m. For a single crystal 

It is observed experimentally that a single crystal will slip when the resolved shear stress on the slip 

, is best demonstrated with hcp 

ms allows large differences in orientation between the slip 

Most studies of the mechanical properties of single crystals are made by subjecting the crystal to simple 

Therefore, the specimen is not permitted to deform freely by uniform glide on every slip plane along the 

20(a). Instead, the slip planes rotate toward the 



by slip on certain planes in particular directions, the measured increase in 

length of the specimen for a given amount of slip will depend on the orientations of the slip plane and 

crystallographic glide strain γ

Glide strain is the relative displacement of two parallel slip planes separated at a unit distance. The 
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Figure 4-20 (a) Tensile deformation of single crystal without constraint; (b) rotation of slip planes due to 

constraint. 

 
 As the single crystal elongates, the slip direction rotates toward the tensile axis. For simplicity in Fig. 4- 

21, the glide elements are kept fixed and the tensile axis is rotated as the crystal elongates from L0 to L1.
 The two cases are equivalent geometrically. Moreover, for simplicity the orientation of the slip plane is 

given by the angle χ between the axis of the glide ellipse and the tensile axis rather than the angle Φ 

between the normal to the glide ellipse (slip plane) and the tensile axis. With this selection of angles, = 

P/A sin χ cos Φ. From triangle ABB', using the law of sines, we can see that.
 

 
 

 
 
 

Figure Extension of a single crystal 

From triangles ABC and AB'C 
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The glide strain is defined as the total amount of slip divided by the thickness of the glide packet 
 
 

Again, from the law of sines 
 

Substitution in the expression for glide strain, and after considerable trigonometric manipulation, results in 
 

 Thus, the glide shear strain may be determined from the initial orientation of the slip plane and slip 

direction (xo and X0) and the extension of the specimen L1/L0. This analysis assumes that slip occurs on 

only a single slip system.

 If the orientation of the glide elements can be determined during or after deformation, the glide strain 

may be determined from

 
 
 

 
Figure Typical single-crystal stress-strain curves 

 
 The fundamental way to present single-crystal data is by plotting resolved shear stress vs. glide shear 

strain. Figure 4-22 shows that there are important differences between metals. Typically, fcc metals 

exhibit greater strain hardening than hcp metals.



 

 

Deformation of face-centered cubic crystals

 
 Because fee crystals have high symmetry and 12 potential slip systems, there is a wide choice of slip

systems. The slip plane will not have to undergo much rotation before the resolved shear stress becomes

high on another {111} <110> slip

 The initial operative slip system, the primary slip system, will be the one with the highest Schmid factor,

m = sin χ cos λ. The primary system will depend on the orientation of the crystal relative to the tensile

stress axis.

 The relationship between the 

stereographic projection (Fig. 4

particular slip system operates.

 There are four (111) poles ABCD representing the normals to the octahedral {111} slip planes. Slip

directions are indicated I through

 For a specimen axis at P, the slip system BIV will be operative. Φ

through B-P-IV.

 We can use the stereographic plot to follow the rotation of the slip system toward the tensile axis. As the

specimen elongates, λ decreases and Φ increases. However it is more convenient to consider that the slip

system remains fixed and the specimen

 

Figure Standard (001)

 As the specimen elongates, the specimen axis eventually reaches the [001]

the resolved shear stress is equal

At this point deformation proceeds on the two slip systems simultaneously to produce duplex slip or

multiple slip.

 Under the microscope conjugate slip appears as another set of intersecting slip lines. The fact that slip

can occur equally on both slip systems indicates that latent strain hardening must have occurred on the

conjugate system when only the primary
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crystals 

Because fee crystals have high symmetry and 12 potential slip systems, there is a wide choice of slip

systems. The slip plane will not have to undergo much rotation before the resolved shear stress becomes

slip system.

The initial operative slip system, the primary slip system, will be the one with the highest Schmid factor,

sin χ cos λ. The primary system will depend on the orientation of the crystal relative to the tensile

 stress axis and the 12 possible slip systems

4-23), where each of the unit triangles defines a region

There are four (111) poles ABCD representing the normals to the octahedral {111} slip planes. Slip

through IV.
, the slip system BIV will be operative. Φ0 and λ0 are given by the great circles

We can use the stereographic plot to follow the rotation of the slip system toward the tensile axis. As the

specimen elongates, λ decreases and Φ increases. However it is more convenient to consider that the slip

the specimen axis rotates.

Standard (001) stereographic projection or a cubic crystal.

he specimen axis eventually reaches the [001]-[      

equal on the primary slip system and the conjugate 

At this point deformation proceeds on the two slip systems simultaneously to produce duplex slip or

Under the microscope conjugate slip appears as another set of intersecting slip lines. The fact that slip

can occur equally on both slip systems indicates that latent strain hardening must have occurred on the

primary system was acting.

Because fee crystals have high symmetry and 12 potential slip systems, there is a wide choice of slip 

systems. The slip plane will not have to undergo much rotation before the resolved shear stress becomes 

The initial operative slip system, the primary slip system, will be the one with the highest Schmid factor, 

sin χ cos λ. The primary system will depend on the orientation of the crystal relative to the tensile 

systems is best shown on a 

defines a region in which a 

There are four (111) poles ABCD representing the normals to the octahedral {111} slip planes. Slip 

are given by the great circles 

We can use the stereographic plot to follow the rotation of the slip system toward the tensile axis. As the 

specimen elongates, λ decreases and Φ increases. However it is more convenient to consider that the slip 

cubic crystal. 

[       ] boundary at P’. Now 

 slip system ( ) [011]. 

At this point deformation proceeds on the two slip systems simultaneously to produce duplex slip or 

Under the microscope conjugate slip appears as another set of intersecting slip lines. The fact that slip 

can occur equally on both slip systems indicates that latent strain hardening must have occurred on the 



 

 

 The specimen axis rotates along the [001]

the two operative slip directions

orientation until the specimen necks down

 Crystals whose axes lie at orientations along the boundaries of the stereographic triangle represent a

special situation because the critical

 Therefore, plastic deformation will begin on more than one slip plane and they will initially deform by

duplex slip. Figure 4-24 shows

orientations.

 Deformation by duplex slip results in a hi

dislocations on two intersecting slip systems. This is shown in Fig. 4

single Figure 4-24 Operative slip

(because of the hcp geometry) while the stress

duplex slip.

 
Deformation by Twinning 

 The second important mechanism

 Twinning results when a portion 

the rest of the untwinned lattice in
 
 

Figure
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The specimen axis rotates along the [001]-[      ] boundary to the [ 12] pole, which is midway between

directions [ 01] and [011]. When the specimen axis reaches

necks down and fractures.

Crystals whose axes lie at orientations along the boundaries of the stereographic triangle represent a

critical resolved shear stress will be the same on more

Therefore, plastic deformation will begin on more than one slip plane and they will initially deform by

shows the number of operative slip systems in a

Deformation by duplex slip results in a high degree of strain hardening because of interaction between

dislocations on two intersecting slip systems. This is shown in Fig. 4-22 where Mg and Zn deform on a

slip sys tens along boundaries of stereographic

(because of the hcp geometry) while the stress-strain curves for Al and Cu are for crystals oriented for

important mechanism by which metals deform is the process known 

 of the crystal takes up an orientation that is related

in a definite, symmetrical way.

Figure Classical picture of twinning 

12] pole, which is midway between 

reaches [ l2] it stays at that 

Crystals whose axes lie at orientations along the boundaries of the stereographic triangle represent a 

more than one slip system.

Therefore, plastic deformation will begin on more than one slip plane and they will initially deform by 

a cubic crystal at these 

gh degree of strain hardening because of interaction between 

22 where Mg and Zn deform on a 

of stereographic triangle. slip system 

strain curves for Al and Cu are for crystals oriented for 

 as twinning.

related to the orientation of 
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 The twinned portion of the crystal is a mirror image of the parent crystal. The plane of symmetry 

between the two portions is called the twinning plane.

 Figure 4-25 illustrates the classical atomic picture of twinning. Figure 4-25 a represents a section 

perpendicular to the surface in a cubic lattice with a low-index plane parallel to the paper and oriented at 

an angle to the plane of polish.

 The twinning plane is perpendicular to the paper.

 If a shear stress is applied, the crystal will twin about the twinning plane (Fig. 4-25b). The region to the 

right of the twinning plane is undeformed. To the left of this plane, the planes of atoms have sheared in 

such a way as to make the lattice a mirror image across the twin plane.

 In Fig. 4-256, open circles represent atoms which have not moved, dashed circles indicate the original 

positions in the lattice of atoms which change position, and solid circles are the initial positions of these 

atoms in the twinned region.

 Note that the twin is visible on the polished surface because of the change in elevation produced by the 

deformation and because of the difference in crystallographic orientation between the deformed and 

undeformed regions.

Difference between Slip & Twinning 
 

Slip Twinning 

1. The orientation of the crystal above and below 

the slip plane is the same after deformation as 

before. 

2. Slip is usually considered to occur in discrete 

multiples of the atomic spacing 

3. Slip occurs on relatively widely spread planes 

4. Slip appears as thin lines 

5. There is very little change in lattice 

orientation and the steps are visible only on 

the surface of the crystal. If the steps are 

removed by polishing there will be no 

evidence that slip has taken place 

1. While twinning results in an orientation 

difference across the twin plane. 

2. While in twinning the atom movements are 

much less than anatomic distance. 

3. The twinned region of a crystal every atomic 

plane is involved in the deformation. 

4. While twinning appears as a board lines or 

bands 

5. In twinning, there is a different lattice 

orientation in the twinned region, removal of 

the steps by surface polishing will not 

destroy the evidence of twinning. Proper 

etching solutions, sensitive to the difference 

in orientation will reveal the twinned region 

 
 If the surface were polished down to section AA, the difference in elevation would be eliminated but the 

twin would still be visible after etching because it possesses a different orientation from the untwinned 

region.

 Twins may be produced by mechanical deformation or as the result of annealing following plastic 

deformation. The first type are known as mechanical twins; the latter are called annealing twins.
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 Mechanical twins are produced in bcc or hcp metals under conditions of rapid rate of loading (shock 

loading) and decreased temperature.

 Face-centered cubic metals are not ordinarily considered to deform by mechanical twinning, although 

gold-silver alloys twin fairly readily when deformed at low temperature, and mechanical twins have 

been produced in copper by tensile deformation at 4 K and by shock loading.

 Twins can form in a time as short as a few microseconds, while for slip there is a delay time of several 

milliseconds before a slip band is formed. Under certain conditions, twins can be heard to form with a 

click or loud report [tin cry].

 If twinning occurs during a tensile test, it produces serrations in the stress-strain curve.

 However, twinning is not a dominant deformation mechanism in metals which possess many possible 

slip systems.

 Twinning generally occurs when the slip systems are restricted or when something increases the critical 

resolved shear stress so that the twinning stress is lower than the stress for slip.

 This explains the occurrence of twinning at low temperatures or high strain rates in bcc and fcc metals or 

in hcp meals at orientations which are unfavorable for basal slip.
 

 Twinning is important in the overall deformation of metals with a low number of slip systems, such as 

the hcp meals.
 
 
 
 
 
 
 
 
 
 
 

 

Figure Microstructures of twins, (a) Neumann bands in iron; (b) mechanical twins produced in zinc by 

polishing; (c) annealing twins in gold-silver alloy. 
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 However, it should be understood that only a relatively small fraction of the total volume of a crystal is 

reoriented by twinning, and therefore hcp metals will, in general, possess less ductility than metals with 

a greater number of slip systems

 A process closely related to twinning is the formation of a martensite region. by a difusionless shear 

transformation. Although both processes produce a local region of new lattice orientation, the basic 

difference is that in a martensite plate the crystal structure is different from the parent crystal.

 The driving force for twinning is the applied shear stress, while in the martensite transformation; the 

diving force is the free energy difference between the parent crystal and the martensitic phase. This 

thermodynamic driving force may be assisted by the applied shear stress.

 
Stacking Faults 

 
 The atomic arrangement on the (111) plane of an fee structure and the {0001} plane of an hcp structure 

could be obtained by the stacking of close-packed planes of spheres.

 For the fee structure, the stacking sequence of the planes of atoms is given by ABC ABC ABC. For the 

hcp structure, the stacking sequence is given by AB AB AB.

 Errors, or faults, in the stacking sequence can be produced in most metals by plastic deformation. Slip 

on the {111} plane in an fcc lattice produces a deformation stacking fault by the process shown in Fig. 

4-27b. Slip has occurred between an A and a B layer. The stacking sequence then becomes ABC AC 

AB.

 Comparison of this faulted stacking sequence (Fig. 4-27b) with the stacking sequence for an hcp 

structure without faults CACA (Fig. 4-27d) shows that the deformation stacking fault contains four 

layers of an hcp sequence. Therefore, the formation of a stacking fault in an fcc metal is equivalent to 

the formation of a thin hcp region.

 Another way in which a stacking fault could occur in an fcc metal is by the sequence2 shown in Fig. 4- 

27c. The stacking sequence ABC ACB CA is called an extrinsic, or twin, stacking fault. The three layers 

ACB constitute the twin. Thus, stacking faults in fcc metals can also be considered as submicroscopic 

twins of nearly atomic thickness. The reason why mechanical twins of microscopically resolvable width 

are not formed readily when fcc metals are deformed is that the formation of stacking faults is so 

energetically favorable.
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Figure Faulted structures, (a) fcc packing; (b) deformation fault in fee; (c) twin fault in fee; (d) hcp packing. 

 The differences in the deformation behavior of fee metals are due to the differences in stacking-fault 

behavior. The creation of a region with hcp stacking CACA introduces a region with higher free energy 

than the fcc structure.

 A stacking fault in a fee metal, when viewed from dislocation theory, is an extended dislocation 

consisting of a thin hcp region bounded by partial dislocations (Fig. 4-28). The nearly parallel partial 

dislocations tend to repel each other, but this is counterbalanced by the surface tension of the stacking 

fault pulling them together.
 
 

 
Figure Schematic model of a stacking fault. 

 
 
 
 
 
 
 
 
 
 
 


 The lower the stacking-fault energy the greater the separation between the partial dislocations and the 

wider the stacking fault.1 Typical values for stacking fault energy (SFE) are given in Table 4-6. The 

data for the stainless steels illustrate that SFE is very sensitive to chemical composition.
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 Stacking faults influence the plastic deformation in a number of ways. Metals with wide stacking faults 

(low SFE) strain-harden more rapidly, twin easily on annealing, and show a different temperature 

dependence of low stress than metals with narrow stacking faults.

 Metals with high SFE have a deformation substructure of dislocation tangles and cells, while low-SFE 

metals show a deformation substructure of banded, linear arrays of dislocations.

 
DEFORMATION BANDS AND KINK BANDS 

 
 Inhomogeneous deformation of a crystal results in regions of different orientation called deformation 

bands.

 When slip occurs without restraint in a perfectly homogeneous fashion, the slip lines are removed by 

subsequent polishing of the surface. Deformation bands, however, can be observed even after repeated 

polishing and etching because they represent a region of different crystallographic orientation.

 The tendency for the formation of deformation bands is greater in polycrystalline specimens because the 

restraints imposed by the grain boundaries make it easy for orientation differences to arise in a grain 

during deformation.

 Deformation bands generally appear irregular in shape but are elongated in the direction of principal 

strain.

 Deformation bands have been observed in both fcc and bcc metals, but not in hcp metals.

 Consideration of the equation for critical resolved shear stress shows that it will be difficult to deform a 

hexagonal crystal when the basal plane is nearly parallel to the crystal axis.

 Orowan found that if a cadmium crystal of this orientation were loaded in compression, it would 

deform by a localized region of the crystal suddenly snapping into a tilted position with a sudden 

shortening of the crystal.
 

 
Figure 4-29 Kink band 

 The bucking, or kinking, behavior is illustrated in Fig. 4-29. The horizontal lines represent basal 

planes, and the planes designated p are the kink planes at which the orientation suddenly changes.

 Distortion of the crystal is essentially confined to the kink band.
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 Further study of kink bands by Hess and Barrett showed that they can be considered to be a simple 

type of deformation band.

 Kink bands have also been observed in zinc crystals tested in tension, where a non uniform 

distribution of slip can produce a bending moment which can cause kink formation.

 
STRAIN HARDENING OF SINGLE CRYSTALS 

 
 One of the chief characteristics of the plastic deformation of metals is the fact that the shear stress 

required to produce slip continuously increases with increasing shear strain.

 The increase in the stress required to cause slip because of previous plastic deformation is known as
strain hardening, or work hardening. 

 An increase in low stress of over 100 percent from strain hardening is not unusual in single crystals of 

ductile metals,

 Strain hardening is caused by dislocations interacting with each other and with barriers which impede 

their motion through the crystal lattice.

 Hardening due to dislocation interaction is a complicated problem because it involves large groups of 

dislocations, and it is difficult to specify group behavior in a simple mathematical way.

 The dislocation density of a good annealed crystal is 105 to 106 cm-2 (= 103 to 104 mm-2), while the 

observed dislocation density in cold-worked metal is 1010 to 1012 cm-2 (= 108 to 1010 mm-2).

 One of the earliest dislocation concepts to explain strain hardening was the idea that dislocations pile up 

on slip planes at barriers in the crystal.

 The pile-ups produce a back stress which opposes the applied stress on the slip plane. The existence of 

a back stress was demonstrated experimentally by shear tests on zinc single crystals. Zinc crystals are 

ideal for crystal-plasticity experiments because they slip only on the basal plane, and hence 

complications due to duplex slip are easily avoided.
 

Figure 4-31 Effect of complete reversal of slip direction on stress-strain curve. 
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 In Fig. 4-31, the crystal is strained to point O unloaded, and then reloaded in the direction opposite to 

the original slip direction. Note that on reloading the crystal yields at a lower shear stress than when it 

was first loaded.

 This is because the back stress developed as a result of dislocations piling up at barriers during the first 

loading cycle is aiding dislocation movement when the direction of slip is reversed.

 Furthermore, when the slip direction is reversed, dislocations of opposite sign could be created at the 

same sources that produced the dislocations responsible for strain in the first slip direction. Since 

dislocations of opposite sign attract and annihilate each other, the net effect would be a further 

softening of the lattice.

 This explains the fact that the low curve in the reverse direction lies below the curve for continued low 

in the original direction. The lowering of the yield stress when deformation in one direction is 

followed by deformation in the opposite direction is called the Bauschinger effect.

 
SESSILE DISLOCATION 

 
 The dislocation of low mobility that is produced by a dislocation reaction is called a sessile dislocation.

 Since sessile dislocations do not lie on the slip plane of low shear stress, they act as a barrier to 

dislocation motion until the stress is increased to a high enough level to break down the barrier.

 
LOMER-COTTRELL BARRIERS 

 
 The most important dislocation reaction, which leads to the formation of sessile dislocations, is the 

formation of Lomer-Cottrell barriers in fee metals by slip on intersecting {111} planes.

 
DISLOCATION FOREST 

 
 Another mechanism of strain hardening, in addition to that due to the back stress resulting from 

dislocation pile-ups at barriers, is believed to occur when dislocations moving in the slip plane cut 

through other dislocations intersecting the active slip plane. The dislocations threading through the 

active slip plane are often called a dislocation forest, and this strain-hardening process is referred to as 

the intersection of a forest of dislocations.

 
JOGS 

 
 Figure 4-32a shows that dislocation intersection results in a small step or jog in the dislocation line. Jogs 

on a dislocation restrict its motion so that they contribute to strain hardening. Jogs are also formed by a 

screw dislocation cross slipping from the primary slip plane to another plane which contains the 

common slip direction (Fig. 4-32b)
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Figure 4-32 Formation of a jog J {a) by a dislocation cutting through a screw dislocation as it glides from AB to 

A'B'\ (b) by part of a screw dislocation line AB cross slipping from the primary slip plane PQ into the plane 

 
CROSS SLIP 

 
 The phenomenon of cross slip is restricted to screw dislocations. Since the line of a screw dislocation 

and its Burgers vector are parallel, this does not define a specific plane as with an edge dislocation 

(where b is perpendicular to the dislocation line). To a screw dislocation, all directions around its axis 

look the same, and it can glide on any plane as long as it moves parallel to its original orientation.

 
STRESS - STRAIN CURVES FOR SINGLE CRYSTALS 

 
 When the stress-strain curves for single crystals are plotted as resolved shear stress vs. shear strain, 

certain generalizations can be made for all fcc metals. Following the notation proposed by Seeger, the 

flow curve for pure-metal single crystals can be divided into three stages (Fig. 4-33).

STAGE – I 

 The region of easy glide is a stage in which the crystal undergoes little strain hardening. During easy 

glide, the dislocations are able to move over relatively large distances without encountering barriers. 

The low strain hardening produced during this stage implies that most of the dislocations escape from 

the crystal at the surface. During easy glide, slip always occurs on only one slip system. For this reason, 

stage I slip is sometimes called laminar flow.



 

 

 

Figure 4-33 Generalized

STAGE – II 
 

 Stage II is a nearly linear part of the flow curve 

slip occurs on more than one set

 The length of the active slip lines decreases with increasing strain

formation of a greater number of

 During stage II, the ratio of the 

modulus is nearly independent of stress and temperature

orientation and purity.

 The fact that the slope of the flow curve in stage II is nearly independent of temperature agrees with the

theory that assumes the chief strain

The average dislocation density in stage 
 

 Where is the shear stress needed

numerical constant which varies 

 
STAGE – III 

 
 Stage III is a region of decreasing

 The processes occurring during this

 In this region of the flow curve,

processes that are suppressed at lower

 Cross slip is believed to be the main process by which dislocations, piled up at obstacles during stage II,

can escape and reduce the internal
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Generalized flow curve for fcc single crystals. 

nearly linear part of the flow curve where strain hardening increases rapidly. In this stage,

set of planes.

The length of the active slip lines decreases with increasing strain, which is consistent with the

of Lomer-Cottrell barriers with increasing strain.

During stage II, the ratio of the strain-hardening coefficient (the slope of the curve) to the shear

modulus is nearly independent of stress and temperature, and approximately 

The fact that the slope of the flow curve in stage II is nearly independent of temperature agrees with the

strain-hardening mechanism to be piled-up groups 

 II correlates with resolved shear stress according

needed to move a dislocation in the absence of other dislocations

 from 0.3 to 0.6 for different fcc and bcc metals.

decreasing rate of strain hardening.

this stage are often called dynamical recovery.

curve, the stresses are high enough so that dislocations

lower stresses.

is believed to be the main process by which dislocations, piled up at obstacles during stage II,

internal-strain field.

where strain hardening increases rapidly. In this stage, 

, which is consistent with the 



(the slope of the curve) to the shear 

, and approximately independent of crystal 

The fact that the slope of the flow curve in stage II is nearly independent of temperature agrees with the 

 of dislocations.
according to 

other dislocations and a is a 

metals.



dislocations can take part in 

is believed to be the main process by which dislocations, piled up at obstacles during stage II, 



 

 

 The stress at which stage III begins,

 Also, the flow stress of a crystal strained into stage III is more temperature

strained only into stage II.

 This temperature dependence suggests

hardening mechanism in stage III.

 
Effect of Crystal Orientation on the flow

 
 Figure 4-34 shows that crystal orientation

crystals.

 When the tensile axis is parallel to

stress than any other and the low

 When the tensile axis is close to

very different and the low curves
 
 

 

Figure 4-34 Effect of specimen orientation
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begins, , is strongly temperature-dependent.

Also, the flow stress of a crystal strained into stage III is more temperature-dependent than if it had been

suggests that the intersection of forests of dislocations

III.

flow curve of fcc single crystals 

orientation can have a very strong effect on the 

to a <011> direction, one slip system is carrying

low curve shows a relatively large region of easy glide.

to a <100> or <111> direction, the stress on several

curves show rapid rates of strain hardening.

orientation on the shape of the flow curve for fcc

dependent than if it had been 

dislocations is the chief strain- 

 low curve of fcc single 

carrying appreciably more shear 

glide.

several slip systems is not 

fcc single crystals. 
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Introduction 

DISLOCATION THEORY 

 

 A dislocation is the linear lattice defect that is responsible for nearly all aspects of the plastic 

deformation of metals.

 This chapter is intended to present a more complete treatment of dislocation theory. Techniques for 

observing dislocations in metals are discussed. The effect on dislocation behavior of considering real 

fcc, bcc, or hcp crystal structures are considered.

 The origin of dislocations and the mechanisms for their multiplication are discussed. Interaction of 

dislocations with other dislocations, vacancies, and foreign atoms is discussed in some detail.

 The object of this chapter is the presentation of the basic geometric and mathematical relationships
which describe dislocation behavior. 

 These relationships will be used to explain mechanical behavior and strengthening mechanisms in 

subsequent chapters of this book.

 
Observation of dislocations 

 
 The concept of the dislocation was proposed independently by Taylor, Orowan, and Polanyi1 in 1934, 

but the idea lay relatively undeveloped until the end of World War II. There followed a period of 

approximately 10 years in which the theory of dislocation behavior was developed extensively and 

applied to practically every aspect of the plastic deformation of metals.

 Practically all the experimental techniques for detecting dislocations utilize the strain field around a 

dislocation to increase its effective size. These experimental techniques can be roughly classified into 

two categories, those involving chemical reactions with the dislocation, and those utilizing the physical 

changes at the site of a dislocation.

 Chemical methods include etch-pit techniques and precipitation techniques. Methods based on the 

physical structure at a dislocation site include transmission electron microscopy of thin films and x- 

ray diffraction techniques.
 The simplest chemical technique is the use of an etchant which forms a pit at the point where a 

dislocation intersects the surface. Etch pits are formed at dislocation sites because the strain field 

surrounding the dislocation causes preferential chemical attack.

 Figure 5-1 shows the excellent resolution obtainable from etch-pit studies on alpha brass. Pits only 500 
0A (= 50 nm) apart have been resolved. In the region of heavy slip shown in this electron micrograph the 

dislocation density is 1010 cm-2 (= 108 mm-2).
 A similar method of detecting dislocations is to form a visible precipitate along the dislocation lines. 

Usually a small amount of impurity is added to form the precipitate after suitable heat treatment. The 

procedure is called "decoration" of dislocations.
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Figure 5-1 Etch pits on slip bands in alpha brass crystals (5,000 X). 

 This technique was first used by Hedges and Mitchell1 to decorate dislocations in AgBr with photolytic 

silver. It has since been used with many other ionic crystals,2 such as AgCl, NaCl, KCl, and CaF2. With 

these optically transparent crystals this technique has the advantage that it shows the internal structure of 

the dislocation lines.

 Figure 5-2 shows a hexagonal network of dislocations in a NaCl crystal which was made visible by 

decoration.

Figure 5-2 Hexagonal network of dislocations in NaCl detected by a decoration technique. 

 
 The most powerful method available today for the detection of dislocations in metals is transmission 

electron microscopy of thin foils. Thin sheet, less than 1 mm thick, is thinned after deformation by 

electro polishing to a thickness of about 1,000 A (= 100 nm). At this thickness the specimen is 

transparent to electrons in the electron microscope.
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 In conventional transmission electron microscopy, individual dislocation lines can be observed 

because the intensity of the diffracted electron beam is altered by the strain field of the dislocation.

 The width of the diffraction image of a dislocation in a thin foil is about 100 A (= 10 nm), so that this 

technique can be used at dislocation densities up to about 1011 cm-2 (= 109 mm -2).

 By means of this technique it has been possible to observe dislocation networks (Fig. 5-3), stacking 

faults, dislocation pile-up at grain boundaries (Fig.6-1), Lomer-Cottrell barriers, and many other 

structural features of dislocation theory.
 
 

Figure 5-3 Dislocation network in cold-worked aluminum (32,500 X). 

 
 However, this technique is not without disadvantages. Since only a miniscule volume of material is 

examined with thin films, great care must be exerted to obtain a representative sample. It is possible to 

alter the defect structure during sectioning and polishing to a thin film, and dislocation structures may 

relax in a very thin foil.

 The greatest defect of transmission electron microscopy is that it is not very effective in detecting long- 

range stresses, nor does it give very much information about slip line lengths or surface step heights.

 The dislocation structure of a crystal can be detected by x-ray microscopy. The most common 

techniques are the Berg-Barrett reflection method.

 
Burgers vector and the dislocation loop 

 
 The Burgers vector b is the vector which defines the magnitude and direction of slip. Therefore, it is the 

most characteristic feature of a dislocation.

 It has already been shown that for a pure edge dislocation the Burgers vector is perpendicular to the 

dislocation line, while for a pure screw dislocation the Burgers vector is parallel to the dislocation line.
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Figure 5-4 (a) Macroscopic deformation of a cube produced by glide of an edge dislocation. (b) Macroscopic 

deformation of a cube produced by glide of a screw dislocation. Note that the end result is identical for both 

situations. ' 

 The macroscopic slip produced by the motion of an edge dislocation is shown in Fig. 5-4a and by a 

screw dislocation in Fig. 5-4b.

 For an edge dislocation the dislocation line moves parallel to the slip direction while the screw 

dislocation moves at right angles to it.
 
 

 Actually, dislocations in real crystals are rarely straight lines and rarely lie in a single plane. In general, 

a dislocation will be partly edge and partly screw in character.

 For example, in Fig. 5-5, the dislocation loop is pure screw at point A and pure edge at point B, while 

along most of its length it has mixed edge and screw components. Note, however, that the Burgers 

vector is the same along the entire dislocation loop.
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Figure 5-5 Dislocation loop lying in a slip plane (schematic). 

 
 A convenient way of defining the Burgers vector of a dislocation is with a Burgers circuit. Consider 

the positive edge dislocation shown in Fig. 5-6a. If we start at a lattice point and imagine a clockwise 

path traced from atom to atom an equal distance in each direction, we find that at the finish of the path 

the circuit does not close.

 The closure failure from finish to start is the Burgers vector b of the dislocation. (If we had made the 

Burgers circuit around the dislocation in the anticlockwise direction, the direction of the Burgers vector 

would have been in the opposite sense.)

 
 Moreover, if we traverse a Burgers circuit about the screw dislocation shown in Fig. 5-6b, we would 

find the closure error pointing out of the front face of the crystal. This is a right-handed screw 

dislocation since in traversing the circuit around the dislocation line; we advance the helix one atomic 

plane into the crystal.
 
 
 

Figure 5-6 Burgers circuits, (a) Around positive edge dislocation; (b) around a right-handed dislocation. 



65 

 

 

 The process of cross slip illustrated in Fig. 5-7, will serve as an example of dislocation loops. In Fig. 5- 

7a a small loop of dislocation line with b = a0/2[101] is moving on a (111) plane in an fcc crystal.
 The dislocation loop is pure positive edge at w and pure negative edge at y. At x the dislocation is a 

right-handed screw while at z the dislocation loop is a pure left-handed screw dislocation. At some stage 

(Fig. 5-lb), the shear stress causing expansion of the loop tends to move the dislocation on the 

intersecting (111) plane.
 
 

 

Figure 5-7 Cross slip in a face-centered cubic crystal 

 
 Since the dislocation is pure screw at z, it is free to move on this plane. In Fig. 5-7c the loop has 

expanded on the second plane, while in Fig. 5-7d double cross slip has taken place as the loop glides 

back onto the original (111) plane.

 Note that during the glide of the dislocation on the cross-slip plane only the screw component of the 

loop has moved.

 Because a dislocation represents the boundary between the slipped and unslipped region of a crystal, 

topographic considerations require that it either must be a closed loop or else must end at the free 

surface of a crystal or at a grain boundary.

 In general, a dislocation line cannot end inside of a crystal. The exception is at a node, where three or 

four dislocation lines meet. At a node two dislocations with Burgers vectors b1 and b2 combine to 

produce a resultant dislocation b3. The vector b3 is given by the vector sum of bl and b2.
 A dislocation with a Burgers vector equal to one lattice spacing is said to be a dislocation of unit 

strength. Because of energy considerations dislocations with strengths larger than unity are generally 

unstable and dissociate into two or more dislocations of lower strength.

 The criterion for deciding whether or not dissociation will occur is base on the fact that the strain energy 

of a dislocation is proportional to the square of its Burgers vector.



 

 

 Therefore, the dissociation reaction

 In adding Burgers vectors, each of the corresponding components is added separately. Thus b

a0[110] + a0[211] = a0[321]. In adding or subtracting components common unit vectors must be used.

Thus a0/3[112] + a0/6[11-1] must

 
Example 

 
Determine whether the dislocation dissociation

 

Since this is a vector equation the x, y, and z

x, y, and z components of the left side (original
 
 

For the dissociation to be energetically favorable
 

 

   and (i e dislocation

 A dislocation of unit strength, or unit dislocation, has a minimum energy when its Burgers vector is

parallel to a direction of closest

observation that crystals always slip

 A unit dislocation of this type is also said to be a 

Burgers vector produces an identity

 A unit dislocation parallel to the slip direction cannot dissociate further unless it becomes an 

dislocation, where a translation of
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reaction b1 b2 + b3 will occur when                 

In adding Burgers vectors, each of the corresponding components is added separately. Thus b

In adding or subtracting components common unit vectors must be used.

must be expressed as a0/6[224] + a0/6[11-1]] = a0/6[333]

dissociation reaction is feasible. 

and z components of the right-hand side of the equation must

(original dislocation). 

favorable 

dislocation reaction is feasible. 

A dislocation of unit strength, or unit dislocation, has a minimum energy when its Burgers vector is

direction of closest atomic packing in the lattice. This agrees

always slip in the close-packed directions.

A unit dislocation of this type is also said to be a perfect dislocation because translation equal to one

identity translation.

A unit dislocation parallel to the slip direction cannot dissociate further unless it becomes an 

of one Burgers vector does not result in an identity

 , but not if 

In adding Burgers vectors, each of the corresponding components is added separately. Thus b1 + b2 = 

In adding or subtracting components common unit vectors must be used. 

/6[333] = a0/2[111].

equation must equal the 

A dislocation of unit strength, or unit dislocation, has a minimum energy when its Burgers vector is 

agrees with the experimental 

because translation equal to one 

A unit dislocation parallel to the slip direction cannot dissociate further unless it becomes an imperfect 

identity translation
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 When an external force of sufficient magnitude is applied to a crystal, the dislocations move and 

produce slip. Thus, there is force acting on a dislocation line which tends to drive it forward

 Figure 5-15 shows a dislocation line moving in the direction of its Burgers vector under the influence of 

a uniform shear stress τ. An element of the dislocation line ds is displaced in the direction of slip normal 

to ds by an amount dl The area swept out by the line element is then ds dl

 This corresponds to an average displacement of the crystal above the slip plane to the crystal below the 

slip plane of an amount (dsdl/A)b, where A is the area of the slip plane. The applied force creating the 

shear stress is τA. The work done when the increment of slip occurs is
 
 

 

The force on a dislocation is always defined as a force F per unit length of dislocation line. Since F = dW/dl and 

remembering that this is a force per unit length {ds), we have 
 
 

 
 

Figure 5-15 Force acting on a dislocation line 
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 Dislocations of opposite sign on the same slip plane will attract each other, run together, and annihilate 

each other.

 This can be seen readily for the case of an edge dislocation (Fig. 4-8) where the superposition of a 

positive and negative dislocation on the same slip plane would eliminate the extra plane of atoms and 

therefore the dislocation would disappear.

 Conversely, dislocations of like sign on the same slip plane will repel each other.

 We can understand this by considering the energy changes. For two dislocations separated at a large 

distance, the elastic strain energy for the combined situations will be

 When the two dislocations are very close together the configuration can be approximated by a single 

dislocation of strength 2b. For this case, the elastic strain energy will be

 
 
 

DISLOCATION CLIMB 

 
 An edge dislocation can glide only in the slip plane containing the dislocation line and its Burgers 

vector. However, under certain conditions an edge dislocation can move out of the slip plane onto a 

parallel plane directly above or below the slip plane. This is the process of dislocation climb.

 This type of movement is termed neoconservative, as compared with conservative movement when a 

dislocation glides in its slip plane.
 

 

Figure 5-18 (a) Diffusion of vacancy to edge dislocation; (b) dislocation climbs up one lattice spacing. 
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 Dislocation climb occurs by the diffusion of vacancies or interstitials to or away from the site of the 

dislocation. Since climb is diffusion-controlled, it is thermally activated and occurs more readily at 

elevated temperature. In positive climb atoms are removed from the extra half plane of atoms at a 

positive edge dislocation so that this extra half plane moves up one atom spacing.

 In negative climb a row of atoms is added below the extra half plane so that the dislocation line moves 

down one atom spacing.

 
INTERSECTION OF DISLOCATIONS 

 
 The intersection of two dislocations produces a sharp break, a few atom spacings in length, in the 

dislocation line. These breaks can be of two types.

 A jog is a sharp break in the dislocation moving it out of the slip plane.

 A kink is a sharp break in the dislocation line which remains in the slip plane.
 
 

MULTIPLICATION OF DISLOCATIONS 

 
 One of the original stumbling blocks in the development of dislocation theory was the formulation of a 

reasonable mechanism by which sources originally present in the metal could produce new dislocations 

by the process of slip.

 Moreover, if there were no source generating dislocations, cold-work should decrease, rather than 

increase, the density of dislocations in a single crystal. Thus, there must be a method of generating 

dislocations or of multiplying the number initially present to produce the high dislocation density found 

in cold-worked metal. The scheme by which dislocations could be generated from existing dislocations 

was proposed by Frank and Read1 and is commonly called a Frank-Read source.
 Consider a dislocation line DD' lying in a slip plane (Fig. 5-26(3). The plane of the figure is the slip 

plane. The dislocation line leaves the slip plane at points D and D', so that it is immobilized at these 

points. This could occur if D and D' were nodes where the dislocation in the plane of the paper intersects 

dislocations in other slip planes, or the anchoring could be caused by impurity atoms

 The maximum value of shear stress is required when the dislocation bulge becomes a semicircle so that 

R has the minimum value 1/2 (Fig. 5-26b).

 Beyond this point R will increase and the dislocation loop will continue to expand under a decreasing 

stress (Fig. 5-26c). When the loop reaches Fig. 5-26d, the segments at m and n will meet and annihilate 

each other to form a large loop and a new dislocation (Fig. 5-26e).
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Figure 5-26 Schematic representation of the operation of a Frank-Read source. 

 
 The stage shown in Fig. 5-26d can best be understood if we assume that the original pinned length DD' 

has a screw orientation. Then segments m and n are in edge orientation but of opposite sign, so that 

annihilation will occur. Once the loop moves into the stage shown in Fig. 5-26c, the loop can continue to 

expand under increased shear stress and the pinned segment DD' is in a position to repeat the process.

 This process can be repeated over and over again at a single source, each time producing a dislocation 

loop which produces slip of one Burgers vector along the slip plane.

 However, once the source is initiated it does not continue indefinitely. The back stress produced by the 

dislocations piling up along the slip plane (see Sec. 5-16) opposes the applied stress and when this 

equals the critical stress given by Eq. (5-30), the source ceases to operate.
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STRENGTHENING MECHANISMS 
 

Different types of strengthening mechanisms 

1. Fine grain size is often desired for high strength 

2. Large additions of solute atoms are added to increase strength 

3. Bring about new phase relationships 

4. Fine-particles may be added to increase strength 

5. Phase transformations may be utilized to increase strength 
 

GRAIN BOUNDARIES AND DEFORMATION 

 The crystallographic orientation changes abruptly in passing from one grain to the next across the grain 

boundary.

 The ordinary high-angle grain boundary represents a region of random misfit between the adjoining 

crystal lattices. As the difference in orientation between the grains on each side of the boundary 

decreases, the state of order in the boundary increases.

 For the limiting case of a low-angle boundary where the orientation difference across the boundary may 

be less than 1° (see Sec. 6-4), the boundary is composed of a regular array of dislocations.

 Figure 6-la schematically illustrates the structure at a high-angle grain boundary. Note the unorganized 

structure, with a few atoms belonging to both grains, while most belong to neither. Those atoms that 

belong to both grains are called coincidence sites

 This grain boundary structure contains grain-boundary dislocations (Fig. 6-1b). These are not mobile 

dislocations producing extensive slip; rather, their chief role is that they group together within the 

boundary to form a step or grain-boundary ledge.

Figure 6-1 (a) Schematic atomic model of a grain boundary; (b) dislocation model of a rain boundary. 

 
 High-angle grain boundaries are boundaries of rather high surface energy. For example, a grain 

boundary in copper has an interfacial surface energy of about, 600 mJ m-2, while the energy of a twin 

boundary is only about 25 mJ m-2.

 Von Mises showed that for a crystal to undergo a general change of shape by slip requires the operation 

of five independent slip systems.



72 

 

 

 This arises from the fact that an arbitrary deformation is specified by the six components of the strain 

tensor, but because of the requirement of constant volume (∆V = 0 = ε11 + ε22 + ε33), there are only five 

independent strain components.

 Crystals which do not possess five independent slip systems are never ductile in polycrystalline form, 

although small plastic elongation may be obtained if there is twinning or a favorable preferred 

orientation.

 Cubic metals easily satisfy this requirement, which accounts for their general high ductility. Hexagonal 

close-packed and other low-symmetry metals do not satisfy this requirement and have low ductility at 

room temperature in polycrystalline form.

 Polycrystalline Zn and Mg become ductile at some elevated temperature at which non basal slip can 

become operative and increase the number of slip systems to at least five.

 At temperatures above about one-half of the melting point, deformation can occur by sliding along the 

grain boundaries. Grain-boundary sliding becomes more prominent with increased temperature and 

decreasing strain rate, as in creep.

 A rough way of distinguishing when grain-boundary sliding becomes prominent is with the 

equicohesive temperature. Above this temperature the grain boundary region is weaker than the grain 

interior and strength increases with increasing grain size. Below the equicohesive temperature the grain- 

boundary region is stronger than the grain interior and strength increases with decreasing grain size 

(increasing grain-boundary area).

 The strengthening mechanisms discussed in this chapter are those which impede the conservative 

motion of dislocations. Generally speaking they are operative at temperatures below about 0.5Tm, where 

Tm is the melting temperature in degrees Kelvin. High temperature deformation of metals is considered 

in Chapter 13.

 
STRENGTHENING FROM GRAIN BOUNDARIES 

 
 Direct evidence for the mechanical strengthening of grain boundaries is provided by experiments1 on 

bicrystals in which the orientation difference between a longitudinal grain boundary was varied in a 

systematic manner.

 The yield stress of the bicrystals increased linearly with increasing misorientation across the grain 

boundary, and extrapolation to zero misorientation angle gave a value close to that of the yield stress of 

a single crystal.

 These results imply that a simple grain boundary has little inherent strength and that the strengthening 

due to grain boundaries results from mutual interference to slip within the grains.

 Several attempts have been made to calculate the stress-strain curve for a polycrystal from stress-strain 

curves for single crystals. In Chap. 4 we saw that the resolved shear stress in a single crystal was given 

by
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 Where M is an orientation factor (the reciprocal of the Schmid factor). For a polycrystal the orientation 

factor M varies from grain to grain and it is necessary to determine some average orientation factor M. 

The best estimate for an FCC lattice is M = 3.1, obtained by G. I. Taylor1 based on the use of the von 

Mises compatibility condition and assuming that all grains undergo the same deformation as the overall 

deformation.

 
HALL-PETCH RELATION 

 

A general relationship between yield stress (and other mechanical properties) and grain size was proposed by 

Hall and greatly extended by Fetch. 

Where,  

 
σ0 = the yield stress 

σi= the "friction stress," representing the overall resistance of the crystal lattice to dislocation movement 

K=the "locking parameter," which measures the relative hardening contribution of the grain boundaries 

D = grain diameter 

 
 The Hall-Petch equation was originally based on yield-point measurements in low-carbon steel.

 It has been found to express the grain-size dependence of the low stress at any plastic strain out to 

ductile fracture and also to express the variation of brittle fracture stress with grain size and the 

dependence of fatigue strength on grain size.1

 The Hall-Petch equation also has been found to apply not only to grain boundaries but to other kinds of 

boundaries such as ferrite-Cementite in pearlite, mechanical twins, and martensite plates.

 The original dislocation model for the Hall-Petch equation was based on the concept that grain 

boundaries act as barriers to dislocation motion.

 Consider a dislocation source at the center of a grain D which sends out dislocations to pile-up at the 

grain boundary.

 The stress at the tip of this pile-up must exceed some critical shear stress τc to continue slip past the 

grain-boundary barrier. From Eq. (5-38) we have
 
 

 The resolved shear stress τs required to overcome the barrier can be taken equal to the applied stress less 

the friction stress to overcome lattice resistance to dislocation motion τi,
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Therefore, 
 

 

Expressing (6-9) in terms of normal stresses, results in Eq. (6-6) 

 The factor k is the slope of the straight line that is obtained when σ0 is plotted against D-1/2
 Many physical interpretations have been ascribed to the term, which is roughly independent of 

temperature.

 The term σi is the intercept along the ordinate in a plot of σ0 vs D-l/2
 It is interpreted as the friction stress needed to move unlocked dislocations along the slip plane. This 

term depends strongly on temperature, strain, and alloy (impurity) content.

 While the Hall-Petch equation is a very general relationship, it must be used with some caution. For 

example, if Eq. (6-6) were extrapolated to the smallest grain size imaginable (approximately 4 nm), it 

would predict strength levels close to the theoretical shear strength.

 Such an extrapolation is in error because the equations for the stresses in a pile-up on which Eq. (6-6) is 

based were derived for large pile-ups containing more than 50 dislocations. For small pile-ups other 

equations must be considered.

 The growing realization of the importance of grain boundaries as dislocation sources has cast 

considerable doubt on the dislocation pile-up model for the Hall-Petch equation. A more general model 

proposed by Li2 avoids the description of the stresses at grain boundaries and instead concentrates on 

the influence of grain size on the dislocation density, and hence, on the yield or low stress. The low 

stress is given in terms of dislocation density by
 

 Where a, has the same meaning as in Eq. (6-6), a is a numerical constant generally between 0.3 and 0.6, 

and p is the dislocation density. The justification for this equation was given in Sec. 4-14. The tie-in 

with grain size is based on the experimental observation that p is an inverse function of the grain size. 

Thus 
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 Perhaps the most general method of producing a substructure network is by introducing a small amount 

of deformation (from about 1 to 10 percent pre strain) and following this with an annealing treatment to 

rearrange the dislocations into sub grain boundaries. The amount of deformation and temperature must 

be low enough to prevent the formation of new grains by recrystallization. This process has been called 

recrystallization in situ, or polygonization

 

     . 

 The term polygonization was used originally to describe the situation that occurs when a single crystal is 

bent to a relatively small radius of curvature and then annealed. Bending results in the introduction of an 

excess number of dislocations of one sign. These dislocations are distributed along the bent-glide planes 

as shown in Fig. 6-6a. When the crystal is heated, the dislocations group themselves into the lower- 

energy configuration of a low-angle boundary by dislocation climb. The resulting structure is a polygon 

like network of low-angle grain boundaries (Fig. 6-6/)).

 The effect of a substructure of low-angle grain boundaries on the stress-strain curve of 1020 steel is 

shown in Fig. 6-7. Note that the material that was cold-reduced and annealed, so as to produce a 

substructure, has a higher yield point and tensile strength than both the annealed material and the 

material which as only cold-reduced. Moreover, the ductility of the material containing a substructure is 

almost as good as the ductility of the annealed steel.
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 Many metals, particularly low-carbon steel, show a localized, heterogeneous type of transition from 

elastic to plastic deformation which produces a yield point in the stress-strain curve. Rather than having 

a flow curve with a gradual transition from elastic to plastic behavior, such as was shown in Fig. 3-1, 

metals with a yield point have a low curve or, what is equivalent, a load-elongation diagram similar Fig. 

6-8.

 The load increases steadily with elastic strain, drops suddenly, fluctuates about some approximately 

constant value of load, and then rises with further strain. The load at which the sudden drop occurs is 

called the upper yield Point. The constant load is called the lower yield point, and the elongation which 

occurs at constant load is called the yield-point elongation.

 The deformation occurring throughout the yield-point elongation is heterogeneous. At the upper yield 

point a discrete band of deformed metal, often readily visible with the eye, appears at a stress 

concentration such as a fillet, and coincident with the formation of the band the load drops to the lower 

yield point. The band then propagates along the length of the specimen, causing the yield-point 

elongation.

 In the usual case several bands will form at several points of stress concentration. These bands are 

generally at approximately 45° to the tensile axis. They are usually called Luders bands, Hartmann 

lines, or stretcher strains, and this type of deformation is sometimes referred to as the Piobert efect.

 The yield-point phenomenon was found originally in low-carbon steel. A pronounced upper and lower 

yield point and a yield-point elongation of over 10 percent can be obtained with this material under 

proper conditions.

 More recently the yield point has come to be accepted as a general phenomenon, since it has been 

observed in a number of other metals and alloys. In addition to iron and steel, yield points have been 

observed in polycrystalline molybdenum, titanium, and aluminum alloys and in single crystals of iron, 

cadmium, zinc, alpha and beta brass, and aluminum.

 Usually the yield point can be associated with small amounts of interstitial or substitutional impuities. 

For example, it has been shown1 that almost complete removal of carbon and nitrogen from low carbon 

steel by wet-hydrogen treatment will remove the yield point. However, only about 0.001 percent of 

either of these elements is required for a reappearance of the yield point.

 A number of experimental factors affect the attainment of a sharp upper yield point. A sharp upper yield 

point is promoted by the use of an elastically rigid (hard) testing machine, very careful axial alignment 

of the specimen, the use of specimens free from stress concentrations, high rate of loading, and, 

frequently, testing at subambient temperatures.
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 If the stress to operate the sources is high, then the initial yield stress is high. The explanation of the 

yield-point phenomenon in terms of dislocation behavior arose originally from the idea that the 

dislocation sources were locked or pinned by solute atom interactions (Sec. 5-15).

 The explanation of this behavior was one of the early triumphs of dislocation theory. Carbon or nitrogen 

atoms in iron readily diffuse to the position of minimum energy just below the extra plane of atoms in a 

positive edge dislocation. The elastic interaction is so strong that the impurity atmosphere becomes 

completely saturated and condenses into a row of atoms along the core of the dislocation.

 Pinning can arise from the solute-dislocation inter- action or by precipitation of fine carbides or nitrides 

along the dislocation. The yield point occurs as a result of unlocking the dislocations by a high stress, or 

for case of strong pinning, by creating new dislocations at the points of stress concentration.

 
STRAIN AGING 

 
 Strain aging is a type of behavior, usually associated with the yield-point phenomenon, in which the 

strength of a metal is increased and the ductility is decreased on heating at a relatively low temperature 

after cold-working. This behavior can best be illustrated by considering Fig. 6-9, which schematically 

describes the effect of strain aging on the low curve of a low-carbon steel.

 Region A of Fig. 6-9 shows the stress-strain curve for a low-carbon steel strained plastically through the 

yield-point elongation to a strain corresponding to point X.

 The specimen is then unloaded and retested without appreciable delay or any heat treatment (region B). 

Note that on reloading the yield point does not occur, since the dislocations have been torn away from 

the atmosphere of carbon and nitrogen atoms.
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 Consider now that the specimen is strained to point Y and unloaded. If it is reloaded after aging for 

several days at room temperature or several hours at an aging temperature like 400 K, the yield point 

will reappear.

 Moreover, the yield point will be increased by the aging treatment from Y to Z. The reappearance of the 

yield point is due to the diffusion of carbon and nitrogen atoms to the dislocations during the aging 

period to form new atmospheres of interstitials anchoring the dislocations.

 Support for this mechanism is found in the fact that the activation energy for the return of the yield point 

on aging is in good agreement with the activation energy for the diffusion of carbon in alpha iron.
 
 

Figure 6-9 Stress-strain curves for low-carbon steel showing strain aging. Region A, original material strained 

through yield point. Region B, immediately retested after reaching point X. Region C, reappearance and 

increase in yield point after aging at 400 K ( ≈ 130 0 C) 
 
 

 Nitrogen plays a more important role in the strain aging of iron than carbon because it has a higher 

solubility and diffusion coefficient and produces less complete precipitation during slow cooling. From a 

practical standpoint it is important to eliminate strain aging in deep-drawing steel because the reap 

pearance of the yield point can lead to difficulties with surface markings or "stretcher strains" due to the 

localized heterogeneous deformation.
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 To control strain aging, it is usually desirable to lower the amount of carbon and nitrogen in solution by 

adding elements which will take part of the interstitials out of solution by forming stable carbides or 

nitrides. Aluminum, vanadium, titanium, columbium, and boron have been added for this purpose.

 The occurrence of strain aging is a fairly general phenomenon in metals. In addition to the return of the 

yield point and an increase in the yield stress after aging, strain aging also produces a decrease in 

ductility and a low value of strain-rate sensitivity Strain aging also is associated with the occurrence of 

serrations in the stress-strain curve (discontinuous or repeated yielding). This dynamic strain-aging 

behavior (Fig. 6-10) is called the Portevin-LeChatelier effect.
 The solute atoms are able to diffuse in the specimen at a rate faster than the speed of the dislocations so 

as to catch and lock them. Therefore, the load must increase and when the dislocations are torn away 

from the solute atoms there is a load drop. This process occurs many times, causing the serrations in the 

stress-strain curve.

 For plain carbon steel discontinuous yielding occurs in the temperature region of 500 to 650 K. This 

temperature region is known as the blue brittle region because steel heated in this temperature region 

shows a decreased tensile ductility and decreased notched-impact resistance. This temperature range is 

also the region in which steels show a minimum in strain-rate sensitivity and a maximum in the rate of 

strain aging.

 The phenomenon of strain aging should be distinguished from a process known as quench aging, which 

occurs in low-carbon steels. Quench aging is a type of true precipitation hardening that occurs on 

quenching from the temperature of maximum solubility of carbon and nitrogen in ferrite. Subsequent 

aging at room temperature, or somewhat above, produces an increase in hardness and yield stress, as in 

the age hardening of aluminum alloys. Plastic deformation is not necessary to produce quench aging.

 
SOLID-SOLUTION STRENGTHENING 

 
 The introduction of solute atoms into solid solution in the solvent-atom lattice invariably produces an 

alloy which is stronger than the pure metal.

 There are two types of solid solutions. If the solute and solvent atoms are roughly similar in size, the 

solute atoms will occupy lattice points in the crystal lattice of the solvent atoms. This is called 

substitutional solid solution.

 If the solute atoms are much smaller than the solvent atoms, they occupy interstitial positions in the 

solvent lattice. Carbon, nitrogen, oxygen, hydrogen, and boron are the elements which commonly form 

interstitial solid solutions.

 The factors which control the tendency for the formation of substitutional solid solutions have been 

uncovered chiefly through the work of Hume-Rothery.

 If the sizes of the two atoms, as approximately indicated by the lattice parameter, differ by less than 15 

percent, the size factor is favorable for solid-solution formation. When the size factor is greater than 15 

percent, the extent of solid solubility is usually restricted to less than 1 percent.
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 Metals which do not have a strong chemical affinity for each other tend to form solid solutions, while 

metals which are far apart on the electromotive series tend to form intermetallic compounds.

 The relative valence of the solute and solvent also is important. The solubility of a metal with higher 

valence in a solvent of lower valence is more extensive than for the reverse situation. For example, zinc 

is much more soluble in copper than is copper in zinc.

 This relative-valence effect can be rationalized to a certain extent in terms of the electron-atom ratio.1 

For certain solvent metals, the limit of solubility occurs at approximately the same value of electron- 

atom ratio for solute atoms of different valence.

 Finally, for complete solid solubility over the entire range of composition the solute and solvent atoms 

must have the same crystal structure.
 
 

Figure 6-12 Effect of solute alloy additions on stress strain curve. 

Solute atoms can interact with dislocations by the following mechanisms: 

1. Elastic interaction 

2. Modulus interaction 

3. Stacking-fault interaction 

4. Electrical interaction 

5. Short-range order interaction 

6. Long-range order interaction 
 

STRENGTHENING FROM FINE PARTICLES 

 
 Small second-phase particles distributed in a ductile matrix are a common source of alloy strengthening. 

In dispersion hardening the hard particles are mixed with matrix powder and consolidated and processed 

by powder metallurgy techniques. However, very many alloy systems can be strengthened by 

precipitation reactions in the solid state.
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 Precipitation hardening, or age hardening, is produced by solution treating and quenching an alloy in 

which a second phase is in solid solution at the elevated temperature but precipitates upon quenching 

and aging at a lower temperature.

 The age-hardening aluminum alloys and copper-beryllium alloys are common examples. For 

precipitation hardening to occur, the second phase must be soluble at an elevated temperature but must 

exhibit decreasing solubility with decreasing temperature. By contrast, the second phase in dispersion- 

hardening systems has very little solubility in the matrix, even at elevated temperatures.

 
FIBER STRENGTHENING 

 
 Materials of high strength, and especially high strength-to-weight ratio, can be produced by 

incorporating fine fibers in a ductile matrix.

 The fibers must have high strength and high elastic modulus while the matrix must be ductile and 

nonreactive with the fibers. Because of their very high strength, whiskers of materials such as Al203 

have been used with good results, but most fiber- strengthened materials use fibers of boron or graphite 

or metal wires such as tungsten.

 The fibers may be long and continuous, or they may be discontinuous. Metals and polymers have been 

used as matrix materials. Glass-fiber-reinforced polymers are the most common fiber-strengthened 

materials. Fiber-reinforced materials are an important group of materials generally known as composite 

materials.

 
MARTENSITE STRENGTHENING 

 
 The transformation of austenite to martensite by diffusion less shear-type transformation in quenching of 

steel is one of the most common strengthening processes used in engineering materials.

 Although martensitic transformations occur in a number of metallurgical systems, only the alloys based 

on iron and carbon show such a pronounced strengthening effect.

 Figure 6-26 shows how the hardness of martensite varies with carbon content and compares this degree 

of strengthening with that achieved in dispersed aggregates of iron and cementite.

 The high strength of martensite implies that there are many strong barriers to dislocation motion in this 

structure. The complexity of the system allows for considerable controversy and hardening mechanisms 

abound, but it appears that there are two main contributions to the high strength of martensite.

 The conventional martensite has a plate structure with a unique habit plane and an internal structure of 

parallel twins each about 0.1 µm thick within the plates.

 The other type of martensite structure is a block martensite containing a high dislocation density of 109 

to 1010 mm-2, comparable to that in a highly deformed metal. Thus, part of the high strength of 

martensite arises from the effective barriers to slip provided by the ine twin structure or the high 

dislocation density.
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 The second important contribution to the strength of martensite comes from the carbon atoms. Figure 6- 

26 shows that the hardness of martensite is very sensitive to carbon content below 0.4 percent. On 

rapidly transforming from austenite to ferrite in the quench, the solubility of carbon in iron is greatly 

reduced. The carbon atoms strain the ferrite lattice and this strain can be relieved by redistribution of 

carbon atoms by diffusion at room temperature.
 
 

Figure 6-26 Hardness of various transformation products in steel. 
 

COLD-WORKED STRUCTURE 

 
 Plastic deformation which is carried out in a temperature region and over a time interval such that the 

strain hardening is not relieved is called cold-work.
 

Figure 6-28 (a) Deformed to 10 percent strain. Beginning of cell formation with dislocation tangles; (b) 

deformed to 50 percent strain. Equilibrium cell size with heavy dislocation density in cell walls (schematic) 
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 Plastic deformation produces an increase in the number of dislocations, which by virtue of their 

interaction results in a higher state of internal stress. An annealed metal contains about 104 to 106 

dislocations per mm2, while a severely plastically deformed metal contains about 1010 mm-2.

 Strain hardening or cold work can be readily detected by x-ray diffraction, although detailed analysis of 

the x-ray patterns in terms of the structure of the cold-worked state is not usually possible.
 

 
STRAIN HARDENING 

 
 Strain hardening or cold-working is an important industrial process that is used to harden metals or 

alloys that do not respond to heat treatment.

 The rate of strain hardening can be gaged from the slope of the low curve.

 Generally, the rate of strain hardening is lower for hcp metals than for cubic metals. Increasing 

temperature also lowers the rate of strain hardening.

 For alloys strengthened by solid-solution additions the rate of strain hardening may be either increased 

or decreased compared with the behavior for the pure metal.

 However, the final strength of a cold-worked solid-solution alloy is almost always greater than that of 

the pure metal cold-worked to the same extent.
 

Figure 6-29 Variation of tensile properties with amount of cold-work. 

 Figure 6-29 shows the typical variation of strength and ductility parameters with increasing amount of 

cold-work. Since in most cold-working processes one or two dimensions of the metal are reduced at the 

expense of an increase in the other dimensions, cold-work produces elongation of the grains in the 

principal direction of working.

 Severe deformation produces a reorientation of the grains into a preferred orientation (Sec. 6-17). In 

addition to the changes in tensile properties shown in Fig. 6-29, cold-working produces changes in other 

physical properties.
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 A high rate of strain hardening implies mutual obstruction of dislocations gliding on intersecting 

systems. This can come about (1) through interaction of the stress fields of the dislocations, (2) through 

interactions which produce sessile locks, and (3) through the interpenetration of one slip system by 

another (like cutting trees in a forest) which results in the formation of dislocation jogs.

 
ANNEALING OF COLD-WORKED METAL 

 
 The cold-worked state is a condition of higher internal energy than the undeformed metal. Although the 

cold worked dislocation cell structure is mechanically stable, it is not thermodynamically stable.

 With increasing temperature the cold-worked state becomes more and more unstable. Eventually the 

metal softens and reverts to a strain-free condition.

 The overall process by which this occurs is known as annealing. Annealing is very important 

commercially because it restores the ductility to a metal that has been severely strain-hardened.

 Therefore, by interposing annealing operations after severe deformation it is possible to deform most 

metals to a very great extent.

 The process of annealing can be divided into three fairly distinct processes: recovery, recrystallization, 

and grain growth.

 Figure 6-30 will help to distinguish between these processes. Recovery is usually defined as the 

restoration of the physical properties of the cold-worked metal without any observable change in 

microstructure.
 

Figure 6-30 Schematic drawing indicating recovery, recrystallization, and grain growth and chief property 

changes in each, region. 

 
 Electrical conductivity increases rapidly toward the annealed value during recovery, and lattice strain, as 

measured with x-rays, is appreciably reduced. The properties that are most affected by recovery are 

those which are sensitive to point defects.



85 

 

 

 The strength properties, which are controlled by dislocations, are not affected at recovery temperatures. 

An exception to this is single crystals of hep metals which have deformed on only one set of planes 

(easy glide)

Figure 6-31 Changes in microstructure of cold-worked 70-30 brass with annealing, (a) Cold-worked 

40 percent; (b) 440oC, 15 min; (c) 5750C, 15 min (150X) 

 
 Recrystallization is the replacement of the cold-worked structure by a new set of strain-free grains.

 Recrystallization is readily detected by metallographic methods and is evidenced by a decrease in 

hardness or strength and an increase in ductility. The density of dislocations decreases considerably on 

recrystallization, and all effects of strain hardening are eliminated.

 The stored energy of cold-work is the driving force for both recovery and recrystallization. If the new 

strain-free grains are heated at a temperature greater than that required to cause recrystallization, there 

will be a progressive increase in grain size.

 The driving force for grain growth is the decrease in free energy resulting from a decreased grain- 

boundary area due to an increase in grain size.

 Figure 6-31 shows the progression from a cold-worked microstructure to a fine recrystallized grain 

structure, and finally to a larger grain size by grain growth.

 
 Six main variables influence recrystallization behavior. They are

(1) Amount of prior deformation, 

(2) Temperature, 

(3) Time, 

(4) Initial grain size, 

(5) Composition, 

(6) Amount of recovery or polygonization prior to the start of recrystallization. 

 Because the temperature at which recrystallization occurs depends on the above variables, it is not a 

fixed temperature in the sense of a melting temperature.
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 For practical considerations a recrystallization temperature can be defined as the temperature at which a 

given alloy in a highly cold-worked state completely recrystallizes in 1 h.

 Because the driving force for grain growth is appreciably lower than the driving force for 

recrystallization, at a temperature at which recrystallization occurs readily grain growth will occur 

slowly. However, grain growth is strongly temperature-dependent, and a grain-coarsening region will 

soon be reached in which the grains increase in size very rapidly.

 
The relationship of the above variables to the recrystallization process can be summarized as follows: 

 
1. A minimum amount of deformation is needed to cause recrystallization. 

2. The smaller the degree of deformation, the higher the temperature required to cause recrystallization. 

3. Increasing the annealing time decreases the recrystallization temperature. However, temperature is far 

more important than time. Doubling the annealing time is approximately equivalent to increasing the 

annealing temperature 10oC. 

4. The initial grain size depends chiefly on the degree of deformation and to a lesser extent on the 

annealing temperature. The greater the degree of deformation, and the lower the annealing temperature, 

the smaller the recrystallized grain size. 

5. The larger the original grain size, the greater the amount of cold-work required to produce an 

equivalent recrystallization temperature. 

6. The recrystallization temperature decreases with increasing purity of the metal. Solid-solution 

alloying additions always raise the recrystallization temperature. 

7. The amount of deformation required to produce equivalent recrystallization behavior increases with 

increased temperature of working. 

8. For a given reduction in cross section, different metalworking processes, such as rolling, drawing, 

etc., produce somewhat different effective deformations. Therefore, identical recrystallization behavior 

may not be obtained. 
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(cementite) in grams that 
of steel 

1600 


1400 
T(°C) 










+L 

CFe3 C = 6.70 wt%

 

 
L 

 
1200 

(austenite) 
1148°C L+Fe

1000 
 + Fe3C 

5.7g 800 

R 
600 

 
727°C 

 

S 

 + Fe3C 

400 
0 1 2 3 4 5 

 

C CO Co, wt% C 

C wt% C 
wt% C 
wt% C 

L+Fe3C 
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CFe 3C 

F
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C
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c. the amount of pearlite
note: amount of pearlite

Co = 0.40 wt% C 
C = 0.022 wt% C 

Cpearlite = C = 0.76 wt% C 

T(°C)
  

Co  C

  
x 100  51.2 g

C  C 

 
pearlite = 51.2 g 

proeutectoid  = 48.8 g 

C 
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pearlite and proeutectoid ferrite
pearlite = amount of  just above

1600 


1400 L 
T(°C)  +L 

1200 (austenite) 1148°C L+Fe
g 

 1000 

800 

R S 
600 

400 

 
 
 
 

727°C 

 
 + Fe3C 

 
 

 + Fe3C 
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Co, wt% C 

ferrite () 
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L+Fe3C 
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TTT DIAGRAM
T (Time) T(Temperature) 

temperature versus the logarithm of time for a steel alloy of definite
composition. It is used to determine when transformations begin and
end for an isothermal (constant
previously austenitized alloy. When austenite is cooled slowly to a
temperature below LCT (Lower
that is formed is Pearlite. As

transformation temperature gets
material is significantly altered
heating and cooling a series of samples, the history of the austenite
transformation may be recorded.
specific transformation starts
percentage of transformation of austenite at a particular temp
is achieved. 

DIAGRAM 
 T(Transformation) diagram is a 

temperature versus the logarithm of time for a steel alloy of definite
composition. It is used to determine when transformations begin and

(constant temperature) heat treatment
previously austenitized alloy. When austenite is cooled slowly to a

(Lower Critical Temperature), the structure
As the cooling rate increases, the 

temperature gets lower. The microstructure
altered as the cooling rate increases.

heating and cooling a series of samples, the history of the austenite
recorded. TTT diagram indicates 
starts and ends and it also shows

percentage of transformation of austenite at a particular temp

 plot of 

temperature versus the logarithm of time for a steel alloy of definite 
composition. It is used to determine when transformations begin and 

treatment of a 
previously austenitized alloy. When austenite is cooled slowly to a 

structure 
 pearlite 

microstructure of the 
rate increases. By 

heating and cooling a series of samples, the history of the austenite 
 when a 

shows what 
percentage of transformation of austenite at a particular temperature 



 

 

TTT DIAGRAMDIAGRAM 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AUSTENITE  PEARLITE 



 

 

AUSTENITE 
Austenite is stable at temperatures above LCT but unstable

below LCT. Left curve indicates the start of a transformation

and right curve represents the finish of a transformation. The

area between the two curves indicates the transformation of

austenite to different types of crystal structures. (Austenite to

pearlite, austenite to 

transformation.) Isothermal Transform Diagram shows that γ

to transformation (a) is

percentage of transformation

Austenite is stable at temperatures above LCT but unstable

below LCT. Left curve indicates the start of a transformation

and right curve represents the finish of a transformation. The

area between the two curves indicates the transformation of

austenite to different types of crystal structures. (Austenite to

 martensite, austenite to 

transformation.) Isothermal Transform Diagram shows that γ

is rapid! at speed of sound; (b)

transformation depends on Temperature only.

Austenite is stable at temperatures above LCT but unstable 

below LCT. Left curve indicates the start of a transformation 

and right curve represents the finish of a transformation. The 

area between the two curves indicates the transformation of 

austenite to different types of crystal structures. (Austenite to 

 bainite 

transformation.) Isothermal Transform Diagram shows that γ 

(b) the 

only. 



 

 

 



 

 

As indicated when is cooled to 
crystal structures due to its unstable

that the transformation of austenite
very slow such as annealing process, the cooling curve passes through the entire
transformation area and the end product of this the cooling process becomes 100%
Pearlite. In other words, when 
transform to Pearlite. If the cooling
transformation area, the end product

means that at certain cooling rates
transforming it into Pearlite. 

 
 
 
 
 

Upper half of TTT Diagram(Austenite-Pearlite
Transformation Area) 

 temperatures below LCT, it transforms
unstable nature. A specific cooling rate may be 

austenite can be 50 %, 100 % etc. If the cooling
very slow such as annealing process, the cooling curve passes through the entire
transformation area and the end product of this the cooling process becomes 100%

 slow cooling is applied, all the Austenite
cooling curve passes through the middle

product is 50 % Austenite and 50 % Pearlite,

rates we can retain part of the Austenite,

Pearlite 

transforms to other 
 chosen so 

cooling rate is 
very slow such as annealing process, the cooling curve passes through the entire 
transformation area and the end product of this the cooling process becomes 100% 

Austenite will 
middle of the 
Pearlite, which 

Austenite, without 



 

 

 

If a cooling rate is very high,

hand side of the Transformation Start curve. In this case all Austenite will
transform to Martensite. If there
product will be martensite. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lower

high, the cooling curve will remain on the 

hand side of the Transformation Start curve. In this case all Austenite will
there is no interruption in cooling the end

Lower half of TTT Diagram (Austenite-Martensite and Bainite
Transformation Areas) 

 left 

hand side of the Transformation Start curve. In this case all Austenite will 
end 

Bainite 
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