
LECTURE NOTES: INTERNET OF THINGS AND CLOUD (IOTC)

 COURSE CODE- PCAC2012

 BY- Assistant Professor,ASHUTOSH KUMAR SINHA

 (CSE DEPT.)

 MODERN ENGINEERING & MANAGEMENT STUDIES,BALASORE

 (MEMS)

MODULE 1: : Internet of Things: How did we get here?

TOPIC –EVOLUTION OF IOT

Conceptual Origins (1960s–1990s)

Early Ideas of Connected Devices

 1960s–1970s: The foundations were laid with the development of

ARPANET, the precursor to the modern Internet.

 1982: A modified Coca-Cola vending machine at Carnegie Mellon

University became the first Internet-connected appliance. It could report

inventory and whether drinks were cold.

https://www.coursera.org/learn/internet-of-things-history

 1990: John Romkey created a toaster that could be turned on and off over

the Internet using TCP/IP—a novelty but a milestone.

These early prototypes demonstrated that devices could be controlled remotely

using network protocols, setting the stage for IoT.

2. Term and Vision (1999–2010)

Coining of the Term "Internet of Things"

 1999: Kevin Ashton, a British technologist working at Procter & Gamble,

coined the term “Internet of Things.” He used it to describe a system where

the Internet is connected to the physical world via sensors.

Technological Enablers Begin to Emerge

 RFID (Radio Frequency Identification): Seen as a crucial component for

IoT. It allowed objects to be tagged and tracked.

 Wireless Technologies: Wi-Fi and Bluetooth matured, enabling short-range

communications between devices.

 IPv6 (1998): Introduced to overcome the address space limitation of IPv4,

crucial for identifying billions of IoT devices.

During this phase, IoT was largely a theoretical concept, but the infrastructure

(sensors, connectivity, IP addressing) was rapidly evolving.

 3. Commercial Emergence and Growth (2010–2015)

Explosion of Smart Devices

 Smartphones and Tablets became widespread, creating demand and

infrastructure for connected devices.

 Smart Home Devices: Introduction of smart thermostats (like Nest in

2011), smart lighting, smart TVs, etc.

Cloud Computing and Big Data

 Platforms like Amazon Web Services (AWS), Google Cloud, and

Microsoft Azure enabled data storage, processing, and analytics at scale.

 Cloud infrastructure made it easier to collect and analyze data from millions

of connected devices.

M2M (Machine to Machine) Communication

 Initially used in industries (e.g., for fleet tracking, manufacturing), this

communication style laid the groundwork for broader IoT networks.

IoT became commercially viable, and startups began entering the market with

consumer and industrial applications.

 4. Rapid Expansion and Industrial IoT (2015–2020)

Key Trends

 Smart Cities: IoT used for traffic control, waste management, energy

optimization.

 Industrial IoT (IIoT): Applied in manufacturing, logistics, and utilities.

Technologies like SCADA systems, predictive maintenance, and digital

twins emerged.

 Wearables: Fitness trackers, smartwatches (e.g., Apple Watch, Fitbit), and

health-monitoring devices surged.

Edge Computing

 The need to process data closer to its source (rather than sending everything

to the cloud) led to edge computing.

 Reduced latency and bandwidth usage, enabling real-time decision-making.

Security Challenges

 High-profile hacks (e.g., Mirai Botnet in 2016) exposed vulnerabilities in

poorly secured IoT devices.

 Emphasis grew on device authentication, firmware updates, and

standardized security protocols.

 5. Maturity and Integration (2020–Present)

5G Networks

 Ultra-low latency and high bandwidth made 5G a key enabler for advanced

IoT applications—especially for autonomous vehicles, remote surgeries,

and industrial automation.

Artificial Intelligence and IoT (AIoT)

 Integration of AI enables devices to learn, adapt, and make intelligent

decisions.

 Example: Smart cameras that can identify anomalies or optimize energy

usage in real-time.

Platform Ecosystems

 Companies like Amazon Alexa, Google Home, Apple HomeKit, and

Samsung SmartThings established robust ecosystems to integrate and

control devices seamlessly.

Sustainability and Green IoT

 Focus on energy-efficient devices, smart grids, and environmental

monitoring.

 IoT used in agriculture (smart farming) to optimize irrigation, reduce

waste, and monitor crops.

6. Future Trends (2025 and Beyond)

Key Emerging Trends

 IoT + Blockchain: For secure, transparent, and decentralized data

management.

 Autonomous Systems: Self-operating supply chains, factories, vehicles

using real-time IoT data.

 Digital Twins: Virtual replicas of physical assets/systems for simulation and

monitoring.

 Smart Implants & Bio-IoT: Health monitoring via embedded sensors in the

human body.

 Quantum IoT: Future possibilities using quantum communication for ultra-

secure networks.

Projections

 By 2030, it’s estimated there will be 50+ billion connected devices.

 Economic impact projected in trillions, especially in healthcare,

manufacturing, transportation, and utilities.

Summary Table of IoT Evolution

Era Key Milestones Technologies Involved

1960s–1990s
ARPANET, first smart devices (Coke

machine, toaster)
TCP/IP, early networking

1999–2010
"IoT" term coined, RFID growth,

IPv6
RFID, IPv6, Wi-Fi, Bluetooth

2010–2015 Smart homes, M2M, cloud growth Smartphones, Cloud, Big Data

2015–2020
Industrial IoT, smart cities, edge

computing
Sensors, Edge Devices, AI

2020–

present
5G, AIoT, platforms, security focus 5G, AI, Cloud, Edge, ML

2025 and

beyond
Blockchain, Digital Twins, Bio-IoT

Blockchain, Quantum Tech,

Nano Sensors

TOPIC- evolution of telephony networks

1. Manual and Analog Telephony (1876–1960s)

 1876 – Invention of the telephone by Alexander Graham Bell.

 Early telephony relied on manual switchboards, where operators

physically connected calls.

 1920s–1960s – Introduction of automatic switching systems (like the

Strowger switch).

 Entirely analog voice transmission over copper wires.

2. Electromechanical to Electronic Switching (1960s–1980s)

 Crossbar switches replaced manual systems, enabling faster call

connections.

 Stored Program Control (SPC) introduced in the 1970s allowed

programmability in switches.

 Networks became semi-automated, with improved reliability and scalability.

3. Digital Telephony (1980s–1990s)

 Shift from analog to digital transmission and switching (e.g., T1, E1

lines).

 Use of Pulse Code Modulation (PCM) for voice.

 Introduction of ISDN (Integrated Services Digital Network) for carrying

voice, video, and data.

 Emergence of SS7 (Signaling System No. 7) for call setup, routing, and

control.

4. Mobile Telephony Networks

1G (1980s)

 Analog cellular networks (e.g., AMPS).

 Basic voice services, limited capacity and security.

2G (1990s)

 Digital cellular (GSM, CDMA).

 Introduction of SMS, better voice quality, and encryption.

3G (2000s)

 Data services (video calling, internet).

 Based on standards like UMTS, CDMA2000.

4G (2010s)

 High-speed IP-based networks.

 VoLTE (Voice over LTE) replaces traditional circuit-switched voice.

 Supports HD video streaming, VoIP, and web applications.

5G (2020s)

 Ultra-high speed and low latency.

 Designed for IoT, autonomous vehicles, VR/AR.

 Uses network slicing, massive MIMO, and edge computing.

5. Internet and IP Telephony

 Emergence of VoIP (Voice over IP) using the Internet for voice

communication.

 Services like Skype, WhatsApp, Zoom bypass traditional networks.

 Use of SIP (Session Initiation Protocol) and RTP (Real-Time Transport

Protocol).

 Decreasing reliance on traditional PSTN.

 6. All-IP and Converged Networks

 Gradual retirement of PSTN in favor of IP-based infrastructure.

 IMS (IP Multimedia Subsystem) enables integrated voice, video, and

messaging.

 Convergence of fixed-line, mobile, and data networks.

Summary Table:

Era Technology Key Features

1870s–1960s Analog / Manual Operator switchboards, copper wires

1960s–1980s Electromechanical Automatic switching, crossbar

1980s–1990s Digital PCM, ISDN, SS7

1990s–2020s Mobile (1G–5G) GSM, LTE, VoLTE, 5G

2000s–Present IP Telephony VoIP, SIP, IMS, Unified Communications

TOPIC- Circuit Switched Networks

 Circuit-Switched Networks: An Overview

Circuit-switched networks were the foundation of traditional telephony systems.

They provide a dedicated communication path between two parties for the entire

duration of a call. This model mimics a physical electrical circuit between the

calling and receiving devices.

 How It Works

1. Call Setup: A dedicated path (circuit) is established between the caller and

receiver through a series of connected switches.

2. Call Transmission: Once the circuit is established, data (usually voice)

flows continuously and exclusively on that path.

3. Call Teardown: The circuit is terminated when the call ends, freeing the

resources.

Key Characteristics

Feature Description

Dedicated Path One fixed path is reserved for each communication.

Consistent Bandwidth Guaranteed bandwidth and latency for the duration.

Connection-Oriented Connection must be established before data is sent.

Analog/Digital Early systems used analog; later ones used digital PCM.

Example Protocols SS7 (Signaling), TDM (Time-Division Multiplexing)

History and Examples

 Public Switched Telephone Network (PSTN): The classic example of a

global circuit-switched system.

 ISDN (Integrated Services Digital Network): Used digital circuit-

switching for voice and some data.

 Early mobile networks (1G): Used circuit-switched technology for analog

voice.

Advantages

 Stable connection: No data loss or jitter once the circuit is established.

 Low latency: Constant and predictable, ideal for voice communication.

 Simplicity: Especially in analog systems, the architecture was relatively

straightforward.

 Disadvantages

 Inefficient use of resources: The dedicated path is unused during silences in

a conversation.

 Scalability issues: Not well-suited to handle massive numbers of users or

diverse data types.

 Costly infrastructure: Building and maintaining dedicated lines is

expensive.

 Lack of flexibility: Not ideal for data-intensive or bursty communication

(like web browsing or video streaming).

 Comparison with Packet-Switched Networks

Feature Circuit-Switched Packet-Switched (e.g., Internet)

Path Dedicated Shared, dynamic

Efficiency Lower (idle time wastes bandwidth) Higher (resources used as needed)

Suitable for Voice calls Voice, video, data, all types

Examples PSTN, ISDN Internet, VoIP, LTE, 5G

Conclusion

Circuit-switched networks were instrumental in the development of global

communication but have largely been replaced by packet-switched technologies

due to their higher efficiency, flexibility, and scalability. Today, circuit switching

remains mostly in legacy systems, with modern communication moving toward IP-

based infrastructures.

TOPIC- Packet Switched Networks

Packet-Switched Networks: An Overview

Packet-switched networks are the foundation of modern digital communication,

including the internet and most data services today. Instead of establishing a

dedicated path like in circuit switching, data is broken into packets that are routed

independently through the network.

🧱 How It Works

1. Data Segmentation: Messages are split into smaller units called packets.

2. Packet Routing: Each packet is sent independently across the network,

possibly taking different paths.

3. Reassembly: Packets are reassembled at the destination in the correct order.

Each packet includes:

 Header (with destination/source address, sequence number)

 Payload (actual data)

🧱 Key Characteristics

Feature Description

No dedicated path Resources are shared among many users.

Connectionless or connection-

oriented

e.g., IP (connectionless), TCP (connection-

oriented)

Best-effort delivery
Network tries to deliver packets without

guarantees.

Dynamic routing
Packets may take different routes to reach the

destination.

🧱 Examples

 Internet Protocol (IP): Core of the internet; uses packet switching.

 VoIP (Voice over IP): Real-time voice communication using packets.

 Mobile networks (4G/5G): Use packet switching for both voice and data.

 Online services: Web browsing, email, video streaming, etc.

🧱 Advantages

 Efficient resource utilization: Bandwidth is used only when data is sent.

 Scalable: Supports a large number of users with varying demands.

 Robust and fault-tolerant: Packets can be rerouted if a link fails.

 Supports diverse traffic types: Voice, video, text, file transfer, etc.

🧱 Disadvantages

 Variable delay (jitter): Packets may arrive at different times.

 Packet loss: Some packets may get lost and need retransmission.

 Out-of-order delivery: Requires reassembly mechanisms.

 More complex protocols: Needs error detection, flow control, etc.

Comparison: Packet-Switched vs Circuit-Switched

Feature Packet-Switched Circuit-Switched

Path Dynamic and shared Dedicated and fixed

Efficiency High (uses bandwidth as needed) Low (idle time wastes resources)

Flexibility Supports many data types Primarily for voice

Reliability Requires error correction Very reliable once connected

Latency Variable (depends on network load) Constant during call

Examples Internet, VoIP, 4G/5G PSTN, ISDN, early mobile systems

Key Protocols in Packet Switching

Protocol Role

IP Routing and addressing

TCP Reliable, connection-oriented delivery

UDP Fast, connectionless transmission

RTP Real-time transport for media

SIP Session control for VoIP

Conclusion

Packet-switched networks are the backbone of modern communications,

enabling the internet, mobile data, video conferencing, and much more. They offer

flexibility, scalability, and efficiency, which make them superior to traditional

circuit-switched systems in most scenarios.

TOPIC-WIRELESS TECHNOLOGY

Wireless technologies refer to communication methods that use electromagnetic

waves (radio frequencies, infrared, satellite, etc.) to transmit data without the need

for physical connections like cables or wires. These technologies are fundamental

to modern communication, enabling mobility, flexibility, and broad connectivity.

Here’s a breakdown of the main types of wireless technologies:

🧱 1. Wi-Fi (Wireless Fidelity)

 Use: Internet access in homes, offices, and public places

 Frequency: 2.4 GHz & 5 GHz (some newer versions use 6 GHz)

 Standards: IEEE 802.11 (e.g., 802.11ac, 802.11ax/Wi-Fi 6)

🧱 2. Cellular Networks

 Use: Mobile phone communication and data

 Generations:

o 2G: Voice and basic data (SMS)

o 3G: Better data rates, video calling

o 4G/LTE: High-speed internet, HD streaming

o 5G: Ultra-fast, low-latency, IoT support

🧱 3. Bluetooth

 Use: Short-range device communication (headphones, wearables,

peripherals)

 Range: Typically up to 10 meters

 Versions: Bluetooth 5.0+ offers improved speed and range

🧱 4. Satellite Communication

 Use: Global communication, remote area access, GPS

 Examples: Starlink, GPS, satellite phones

 Pros: Wide coverage

 Cons: Higher latency, weather sensitive

🧱 5. Infrared (IR)

 Use: Remote controls, short-range data transfer

 Line of Sight: Required

 Speed: Slower compared to other wireless methods

🧱 6. Zigbee / Z-Wave

 Use: Smart home and IoT devices

 Low Power: Designed for low data rates and long battery life

 Short Range: Suitable for mesh networks

🧱 7. NFC (Near Field Communication)

 Use: Contactless payments, data exchange (e.g., Apple Pay, Google Pay)

 Range: A few centimeters

 Security: High due to close proximity

🧱 Applications of Wireless Technologies

 Mobile communication

 Internet access and Wi-Fi hotspots

 IoT (Internet of Things)

 Remote sensing and control

 Smart homes and cities

 Wearable tech

 Autonomous vehicles

Module 2: Internet of Things V2: DragonBoard™ bring up and community

ecosystem

TOPIC- DragonBoard™ 410c single board computer (SBC)

The DragonBoard™ 410c is a compact, versatile single-board computer (SBC)

developed by Arrow Electronics in collaboration with Qualcomm. It adheres to the

96Boards Consumer Edition specification, making it suitable for a wide range of

applications, including IoT development, robotics, multimedia, and embedded

systems.static6.arrow.com+3Arrow+3circuitpython.org+3Linaro+8archlinuxarm.o

rg+8RLX Components+8

https://www.coursera.org/learn/internet-of-things-dragonboard-version2
https://www.coursera.org/learn/internet-of-things-dragonboard-version2
https://www.arrow.com/en/research-and-events/videos/dragonboard-410c-an-overview?utm_source=chatgpt.com
https://www.arrow.com/en/research-and-events/videos/dragonboard-410c-an-overview?utm_source=chatgpt.com
https://archlinuxarm.org/platforms/armv8/qualcomm/dragonboard-410c?utm_source=chatgpt.com

🧱 Key Specifications

 Processor (SoC): Qualcomm® Snapdragon™ 410E (APQ8016E)

o Quad-core ARM® Cortex®-A53 CPU @ 1.2 GHz

o 64-bit capable

o Adreno™ 306 GPU @ 400 MHz

Arrow+11circuitpython.org+11postmarketOS Wiki+11Seeed

Studio+12Linaro+12ServeTheHome Forums+12

 Memory & Storage:

o 1 GB LPDDR3 RAM @ 533 MHz

o 8 GB eMMC 4.51 onboard storage

o MicroSD card slot (SD 3.0, UHS-I)

archlinuxarm.org+5circuitpython.org+5Linaro+5Seeed Studio+3RLX

Components+3Linaro+3

 Connectivity:

o Wi-Fi 802.11 b/g/n (2.4 GHz)

o Bluetooth 4.1

o GPS with onboard antenna Linaro+1Linaro+1

 Ports & I/O:

o 2 x USB 2.0 Host ports

o 1 x USB 2.0 OTG (Micro-USB)

o 1 x HDMI 1.4 (Type A)

o 40-pin Low-Speed (LS) expansion header

o 60-pin High-Speed (HS) expansion header RLX

Components+4circuitpython.org+4Linaro+4circuitpython.org+3Linar

o+3RLX Components+3RLX Components

 Multimedia:

o 1080p@30fps video playback and capture (H.264)

o 720p playback with H.265 (HEVC)

o Integrated Image Signal Processor (ISP) supporting up to 13 MP

cameras

Arrow+4Linaro+4circuitpython.org+4Linaro+4circuitpython.org+4Li

naro+4

 Power:

o Input: 8V–18V @ 3A

o Power connector: 1.7mm inner / 4.8mm outer diameter

Linaro+1circuitpython.org+1

https://circuitpython.org/blinka/dragonboard_410c/?utm_source=chatgpt.com
https://circuitpython.org/blinka/dragonboard_410c/?utm_source=chatgpt.com
https://www.96boards.org/documentation/consumer/dragonboard/dragonboard410c/hardware-docs/hardware-user-manual.md.html?utm_source=chatgpt.com
https://circuitpython.org/blinka/dragonboard_410c/?utm_source=chatgpt.com
https://circuitpython.org/blinka/dragonboard_410c/?utm_source=chatgpt.com
https://rlx.sk/en/arm-development-tools/6589-dragonboard-410c-qualcomm-snapdragon-410-processor-quadcore-a53-12ghz.html?utm_source=chatgpt.com
https://www.96boards.org/product/dragonboard410c/?utm_source=chatgpt.com
https://circuitpython.org/blinka/dragonboard_410c/?utm_source=chatgpt.com
https://circuitpython.org/blinka/dragonboard_410c/?utm_source=chatgpt.com
https://www.96boards.org/documentation/consumer/dragonboard/dragonboard410c/hardware-docs/hardware-user-manual.md.html?utm_source=chatgpt.com
https://www.96boards.org/documentation/consumer/dragonboard/dragonboard410c/hardware-docs/hardware-user-manual.md.html?utm_source=chatgpt.com
https://rlx.sk/en/arm-development-tools/6589-dragonboard-410c-qualcomm-snapdragon-410-processor-quadcore-a53-12ghz.html?utm_source=chatgpt.com
https://www.96boards.org/documentation/consumer/dragonboard/dragonboard410c/hardware-docs/hardware-user-manual.md.html?utm_source=chatgpt.com
https://www.96boards.org/documentation/consumer/dragonboard/dragonboard410c/hardware-docs/hardware-user-manual.md.html?utm_source=chatgpt.com
https://circuitpython.org/blinka/dragonboard_410c/?utm_source=chatgpt.com
https://www.96boards.org/product/dragonboard410c/?utm_source=chatgpt.com

 Dimensions: 85mm x 54mm RLX

Components+2Linaro+2circuitpython.org+2

 Operating System Support:

o Android 5.1 (Lollipop)

o Linux (Debian-based distributions)

o Windows 10 IoT Core postmarketOS Wiki+6Seeed

Studio+6Linaro+6

🧱 Expansion & Development

The DragonBoard 410c supports various expansion options through its LS and HS

connectors, facilitating integration with additional peripherals and sensors.

Mezzanine boards, such as camera modules, can be connected to enhance

functionality, making it ideal for projects in vision systems, robotics, and more.

Arrow+1RLX Components+1

🧱 Use Cases

 IoT Prototyping: Built-in Wi-Fi, Bluetooth, and GPS make it suitable for

developing connected devices.

 Robotics: Compact size and expansion capabilities allow for integration into

robotic systems.

 Multimedia Applications: Supports HD video playback and camera

integration for media-centric projects.

 Educational Purposes: Compatible with various operating systems, making it

a valuable tool for learning and development.

TOPIC- DIY Communities

DIY (Do-It-Yourself) communities are groups of individuals who share

knowledge, skills, and projects to empower each other to build, repair, or modify

things without relying on professional services. These communities thrive both

online and offline and span a wide range of interests—from electronics and coding

to woodworking, home renovation, crafting, and more.

https://www.96boards.org/product/dragonboard410c/?utm_source=chatgpt.com
https://www.96boards.org/product/dragonboard410c/?utm_source=chatgpt.com
https://www.seeedstudio.com/DragonBoard-410C-p-2649.html?srsltid=AfmBOopI8goUp4txhGZ_dr9pKYF0zxSd3Sk-W0nflLLUYvL34uWLoVeC&utm_source=chatgpt.com
https://www.seeedstudio.com/DragonBoard-410C-p-2649.html?srsltid=AfmBOopI8goUp4txhGZ_dr9pKYF0zxSd3Sk-W0nflLLUYvL34uWLoVeC&utm_source=chatgpt.com
https://www.arrow.com/en/campaigns/the-dragonboard-is-here?utm_source=chatgpt.com

🧱 Key Characteristics of DIY Communities

Feature Description

Knowledge Sharing
Members share tutorials, guides, tips, and feedback

freely.

Collaboration
Open-source spirit—members build on each other’s

work.

Innovation &

Creativity

Emphasis on personal problem-solving and custom

solutions.

Learning by Doing
Strong culture of hands-on experimentation and skill-

building.

🧱 Popular DIY Communities (Online)

Platform Focus Areas Description

Instructables All-around DIY
Step-by-step project guides on

electronics, crafts, cooking, etc.

Hackaday.io Hardware, electronics
Hackers, makers, and engineers share

detailed hardware projects.

GitHub
Software, open-source

hardware

Collaboration and sharing of open-

source code and hardware designs.

Reddit
Varied (e.g., r/DIY,

r/raspberry_pi, r/arduino)

Forums for sharing projects,

troubleshooting, and inspiration.

Thingiverse 3D printing, design
Community for sharing 3D-printable

designs and models.

Tindie Maker marketplace
DIY creators sell their hardware

projects and kits.

🧱🧱 DIY Categories & Sub-Communities

🧱 Electronics & Microcontrollers

 Arduino

 Raspberry Pi

 ESP8266/ESP32

 Communities focus on IoT devices, automation, wearables, robotics.

🧱 Crafts & Maker Arts

 Sewing, knitting, papercrafts, laser cutting, etc.

🧱 Home Improvement & Woodworking

 Tool use, repairs, upcycling furniture, DIY renovations.

🧱 Art & Design

 Custom furniture, DIY art, painting, sculpture.

🧱 3D Printing & CNC

 Designing and building tools, prototypes, and artistic objects.

🧱 Offline & Local DIY Communities

 Makerspaces & Hackerspaces: Collaborative workshops with shared tools

and equipment.

 Workshops & Classes: Hosted by libraries, tech incubators, or art studios.

 Maker Faires: Events where DIYers showcase their inventions and

projects.

🧱 Benefits of Joining DIY Communities

 Skill Development: Learn new hands-on and technical skills.

 Support & Feedback: Get help troubleshooting and improving your

projects.

 Inspiration: See what others are making and get ideas.

Access to Resources: Schematics, source code, design files, parts lists.

TOPIC- the DragonBoard™ 410c peripherals

The DragonBoard™ 410c supports a variety of peripherals that can be connected

via its ports and expansion headers. These peripherals expand its capabilities,

making it ideal for a wide range of applications, including IoT, robotics,

multimedia, and embedded development.

🧱 Built-in Interfaces for Peripherals

🧱 USB Ports

 2 x USB 2.0 Type-A host ports – Connect USB keyboards, mice, flash

drives, cameras, Wi-Fi dongles (if needed), etc.

 1 x Micro-USB (OTG) – Supports USB devices and debugging (can be

switched between host/device).

🧱 HDMI

 HDMI 1.4 Type A output – Connects to monitors or TVs for audio/video

output (supports up to 1080p at 30fps).

🧱 MicroSD Card Slot

 For additional storage or booting alternative OS images.

🧱 Wireless Peripherals (Built-in)

 Wi-Fi 802.11 b/g/n – Wireless networking (doesn’t need external dongle).

 Bluetooth 4.1 – Connects to BT speakers, keyboards, headsets, etc.

 GPS – Location services with built-in antenna support.

🧱 Expansion Headers

🧱 40-pin Low-Speed (LS) Connector

This is used for general-purpose peripherals:

 GPIO (General Purpose I/O)

 UART

 SPI

 I2C

 PWM

 ADC

Connectable peripherals include:

 LEDs, buttons

 Temperature sensors

 Motion sensors

 Motor drivers

 I2C displays (e.g., OLED)

 GPS or IMU modules

 Audio DACs/AMPs

🧱 60-pin High-Speed (HS) Connector

Provides support for high-speed signals like:

 Camera interface (CSI)

 Display interface (DSI)

 USB

 HSIC (High-Speed Inter-Chip)

 Additional GPIO

Possible peripherals:

 Camera modules (up to 13 MP via CSI)

 LCD panels (via DSI)

 High-speed ADCs/DACs

 Additional USB interfaces

🧱 Common Peripherals for DragonBoard 410c Projects

Peripheral Type Examples

Camera CSI cameras, USB webcams

Display HDMI monitors, DSI LCDs, SPI OLEDs

Sensors Temperature, humidity, motion (via I2C/SPI)

Actuators Servos, motors (via GPIO/PWM)

Audio HDMI audio, USB speakers/mics, external audio DACs

Communication GPS, LoRa, Zigbee, GSM modules

User Input Keypads, touch screens, USB keyboard/mouse

🧱 Mezzanine Boards (Add-on Boards)

The DragonBoard 410c supports mezzanine boards that follow the 96Boards

spec. These are plug-and-play boards that expand functionality:

 Grove Starter Kit for 96Boards – Sensor modules using Grove connectors

 Sensor Mezzanine Board – Adds various sensors (light, sound, motion)

 Audio Mezzanine Board – Adds microphone and speaker support

 Robotics Mezzanine – For motors, encoders, and robotics projects

TOPIC- Git and GitHub

What is Git?

Git is a version control system—a tool that tracks changes to files (especially

source code) over time.

✅ Key Features of Git:

 Tracks revisions and history of a project

 Allows branching and merging to manage features and experiments

 Enables collaboration without overwriting others' work

 Works locally (does not need the internet)

 Used in software development, documentation, and more

🧱 Common Git Commands:

Command Description

git init Initialize a new Git repository

git clone [URL] Copy a repository from a remote source (e.g., GitHub)

git status Show changes not yet staged/committed

git add [file] Stage a file for commit

git commit -m "msg" Save changes with a message

git push Upload changes to a remote repository

git pull Download changes from a remote repository

git branch List or create branches

git merge [branch] Merge another branch into the current one

🧱 What is GitHub?

GitHub is a web-based platform that hosts Git repositories online. It provides

tools for collaboration, code review, issue tracking, CI/CD integration, and more.

🧱 Key Features of GitHub:

 Remote hosting of Git repositories

 Web interface for viewing code and commits

 Pull requests for code reviews and merging changes

 Issues and project boards for task tracking

 Actions (CI/CD) for automation

 Supports private and public repos

🧱🧱🧱 Used For:

 Collaborative coding (especially open source)

 Sharing code publicly or privately

 Managing contributions from multiple developers

 Deploying code using GitHub Actions

🧱 Git vs GitHub

Feature Git GitHub

Type
Version control system (CLI

tool)

Online hosting service for Git

repos

Works

offline?
Yes No (web-based)

Interface Command-line or GUI Web interface + Git integration

Creator Linus Torvalds Microsoft (owns GitHub)

Example Use Track changes locally Collaborate and share with a team

TOPIC- GPIO and Arduino

What is GPIO?

GPIO stands for General-Purpose Input/Output. It refers to digital pins on a

microcontroller (or SBC like Raspberry Pi) that can be programmed to act as

either input or output.

🧱 GPIO Pin Modes:

Mode Function

Input Reads signals (e.g., buttons, sensors)

Output Sends signals (e.g., turn on LEDs, relays)

🧱 Common GPIO Tasks:

 Read a button press

 Turn an LED on/off

 Control a motor or buzzer

 Read data from a sensor

 Communicate with other devices (via I2C, SPI, etc.)

🧱 GPIO on Arduino

Arduino boards like the Uno, Nano, or Mega provide GPIO pins that you can

control through the Arduino IDE using C/C++-style code.

🧱 Arduino UNO GPIO Overview:

 14 digital I/O pins (D0 to D13)

o Some support PWM (marked with ~)

 6 analog input pins (A0 to A5)

o Read variable voltage (e.g., from a potentiometer)

 Communication pins:

o I2C (A4 - SDA, A5 - SCL)

o SPI (D10-D13)

o UART (D0 - RX, D1 - TX)

✍️ Example: Blink an LED on Digital Pin 13

cpp

CopyEdit

void setup() {

 pinMode(13, OUTPUT); // Set pin 13 as output

}

void loop() {

 digitalWrite(13, HIGH); // Turn on LED

 delay(1000); // Wait 1 second

 digitalWrite(13, LOW); // Turn off LED

 delay(1000); // Wait 1 second

}

🧱 Example: Read a Button on Pin 2

cpp

CopyEdit

void setup() {

 pinMode(2, INPUT); // Set pin 2 as input

 pinMode(13, OUTPUT); // Set LED pin as output

}

void loop() {

 int buttonState = digitalRead(2);

 if (buttonState == HIGH) {

 digitalWrite(13, HIGH); // Turn on LED if button is pressed

 } else {

 digitalWrite(13, LOW); // Turn off LED otherwise

 }

}

🧱 GPIO Libraries (Optional but Helpful)

 digitalWrite(pin, value) – Sets pin HIGH/LOW

 digitalRead(pin) – Reads pin state

 pinMode(pin, mode) – Sets INPUT or OUTPUT

 analogRead(pin) – Reads analog value

 analogWrite(pin, value) – Writes PWM signal (on PWM-capable pins)

🧱 Use Cases in Projects:

Project GPIO Usage

Smart home lighting Control relays via digital output

Line-following robot Read IR sensors via digital input

Weather station Read analog temperature/humidity

Security system Trigger alarm from motion sensor

TOPIC- Mezzanines and Sensors

Mezzanine Boards and Sensors on DragonBoard™ 410c

The DragonBoard 410c supports hardware expansion via mezzanine boards,

which are stackable add-ons that connect to its 40-pin Low-Speed (LS) and 60-pin

High-Speed (HS) connectors. These mezzanine boards make it easier to integrate

various sensors and actuators without needing complex wiring or soldering.

🧱 What Are Mezzanine Boards?

Mezzanine boards are standardized expansion boards designed to interface with

96Boards like the DragonBoard 410c. They provide plug-and-play access to:

 Sensors (temperature, light, motion)

 Displays

 Actuators (motors, buzzers, servos)

 Communication modules (LoRa, Zigbee)

 Audio and camera interfaces

They allow rapid prototyping and integration without custom PCBs.

🧱 Common Mezzanine Boards for DragonBoard 410c

Mezzanine Board Features / Use Case

Grove Sensor

Mezzanine

Connects to dozens of Grove modules (sensors, buttons,

displays)

Audio Mezzanine Adds speaker amp, mic input, 3.5mm jack

Robotics Mezzanine Motor drivers, encoders, battery interface

UART Mezzanine Provides serial port access (RS232/TTL)

Camera Mezzanine Interfaces with high-resolution cameras

IoT Mezzanine Adds modules like GPS, GSM, NB-IoT

🧱 Common Sensor Types Used with Mezzanines

🧱 Digital Sensors

 Temperature & Humidity: DHT11, DHT22, BME280

 Motion Detection: PIR motion sensors

 Proximity: IR or ultrasonic sensors (e.g., HC-SR04)

 Light Sensors: TSL2561, BH1750

 Gas Sensors: MQ series (e.g., MQ-2 for smoke)

🧱 Analog Sensors

 Potentiometers – Measure rotation or voltage level

 Force Sensitive Resistors (FSR) – Pressure

 Soil Moisture Sensors – Analog output for water content

🧱 I2C/SPI Sensors

 Accelerometers & Gyros: MPU6050, MPU9250

 Compass: HMC5883L

 Environmental: BME680 (gas, temp, humidity, pressure)

 Touch Sensors: Capacitive multi-touch interfaces

🧱 Grove Ecosystem (Great for Beginners)

The Grove Sensor Mezzanine allows you to connect standardized Grove modules.

It includes:

 4-pin connectors for digital, analog, I2C, UART

 Plug-and-play sensors like:

o Grove LED

o Grove Button

o Grove Buzzer

o Grove Light/Temp/Gas sensors

o Grove OLED display

No soldering needed—ideal for students and rapid prototyping.

🧱 Example Use Case: Environmental Monitoring Station

Hardware Setup:

 DragonBoard 410c + Grove Mezzanine

 Grove Temp & Humidity Sensor (DHT22)

 Grove Light Sensor

 Grove OLED Display

Function:

 Read sensor data via I2C or analog pins

 Display real-time environment data on OLED

 Upload data to cloud over Wi-Fi

🧱 Development with Sensors

Tools & Languages:

 Linux/Debian OS on DragonBoard

 Python, C/C++, or Node.js

 Access GPIO/I2C/SPI via libraries:

o MRAA (Intel/96Boards GPIO/I2C/SPI library)

o UPM (Sensor library for high-level abstraction)

o libgpiod for newer GPIO management on Linux

Module 3: Internet of Things V2: Setting up and Using Cloud Services

TOPIC- Amazon Web Services (AWS) and its significance

 What is AWS?

Amazon Web Services (AWS) is the world’s leading cloud computing

platform, offered by Amazon. It provides on-demand access to computing

resources, storage, databases, machine learning, security, IoT, and many more

services — all over the internet.

✅ Instead of owning physical servers, companies "rent" computing power and

services from AWS, paying only for what they use.

🧱 Why AWS Is Significant

Feature Description

Global

Infrastructure

Operates in multiple geographic regions with data centers

called Availability Zones

Scalability Instantly scale up/down based on usage demand

Cost-Effective
Pay-as-you-go pricing — no need for large upfront hardware

investments

Security
Built-in encryption, compliance (HIPAA, GDPR), and

identity access control

Innovation Speed Developers can build and deploy applications faster

https://www.coursera.org/learn/internet-of-things-cloud-services-version2
https://www.coursera.org/learn/internet-of-things-cloud-services-version2

Feature Description

Reliability 99.99% uptime SLA for many services

🧱 Core AWS Services (By Category)

☁️ Compute

 EC2 (Elastic Compute Cloud): Virtual servers in the cloud

 Lambda: Serverless functions that run code in response to events

 ECS/EKS: Containers and Kubernetes management

🧱 Storage

 S3 (Simple Storage Service): Scalable object storage

 EBS (Elastic Block Store): Persistent block storage for EC2

 Glacier: Low-cost archival storage

🧱 Databases

 RDS (Relational Database Service): Managed MySQL, PostgreSQL,

Oracle, SQL Server

 DynamoDB: Serverless NoSQL database

 Aurora: High-performance relational DB engine by AWS

🧱 Networking

 VPC (Virtual Private Cloud): Isolated network environment

 Route 53: Scalable domain name system (DNS)

 CloudFront: Content delivery network (CDN)

🧱 Security & Identity

 IAM (Identity and Access Management): Manage users, roles, and

permissions

 KMS: Key management and encryption services

 Shield & WAF: DDoS protection and web firewall

🧱 Monitoring & Management

 CloudWatch: Monitor logs, metrics, and system health

 CloudTrail: Audit logs for AWS account activity

 Config: Tracks configuration changes and compliance

🧱 Use Cases of AWS

Use Case Example

Web Hosting Host websites on EC2, S3, and CloudFront

Data Backup &

Storage
Store and archive securely with S3 & Glacier

Mobile App Backend Use Lambda, API Gateway, and DynamoDB

Machine Learning Use SageMaker for model training and deployment

Big Data Analytics
Analyze huge datasets with AWS EMR, Athena, and

Redshift

IoT Projects Use AWS IoT Core to manage connected devices

🧱 Who Uses AWS?

 Startups (e.g., Airbnb, Dropbox)

 Enterprises (e.g., Netflix, Samsung, NASA)

 Governments & NGOs

 Developers, researchers, and educators

🧱 Benefits of Using AWS

Benefit Explanation

Flexibility Use any OS, language, database, or tool

Global Reach Host applications close to users worldwide

Speed of

Deployment
Launch servers or services in minutes

Reduced Costs
Pay only for what you use (and scale down when not

needed)

Innovation Ready Integrated services for AI, analytics, robotics, and IoT

TOPIC- interfacing with the AWS cloud

Interfacing with the AWS Cloud

Connecting your devices, apps, or services to Amazon Web Services (AWS)

involves using various tools, SDKs, and protocols to send, receive, and process

data securely and efficiently.

🧱 How to Interface with AWS

You can interface with AWS in four main ways:

1. 🧱 AWS Management Console (Web UI)

 A graphical web-based interface

 Used to launch, manage, and monitor AWS services

 Best for beginners or one-time setups

Example: Launch an EC2 server or create an S3 bucket via the console

2. 🧱 AWS CLI (Command Line Interface)

 Text-based tool to control AWS from your terminal

 Good for automation and scripting

Example command:

bash

CopyEdit

aws s3 cp myfile.txt s3://my-bucket/

Requires configuring with your credentials via aws configure

3. 🧱 AWS SDKs (for Developers)

Use AWS Software Development Kits (SDKs) to interact with AWS in code.

Language SDK Example

Python boto3

JavaScript/Node.js aws-sdk

Java AWS SDK for Java

C++ / C# Supported too

Python Example with Boto3:

python

CopyEdit

import boto3

s3 = boto3.client('s3')

s3.upload_file('data.txt', 'my-bucket', 'data.txt')

Ideal for apps, IoT devices, or automation scripts

4. 🧱 RESTful APIs (HTTP Requests)

Many AWS services expose API endpoints (e.g., for S3, API Gateway, IoT Core).

 Send HTTP GET/POST requests with headers and credentials

 Often used in web apps or when integrating third-party services

🧱 Interfacing IoT Devices (e.g., Arduino or DragonBoard) with AWS

For Embedded/IoT Projects:

Use AWS IoT Core, which allows secure device communication via MQTT,

HTTP, or WebSockets.

Example: Sending sensor data to AWS IoT Core

1. Register your device in AWS IoT Core

2. Download security certificates

3. Use MQTT libraries on your device

4. Publish data to an IoT topic

Python (MQTT Publish):

python

CopyEdit

import paho.mqtt.client as mqtt

client = mqtt.Client()

client.tls_set("root-CA.crt", certfile="cert.pem", keyfile="private.key")

client.connect("your-iot-endpoint.amazonaws.com", 8883, 60)

client.publish("sensor/data", '{"temp": 23.5}')

🧱 Security in Interfacing

AWS uses IAM (Identity and Access Management) for secure access.

 Always use access keys or IAM roles for SDKs/CLI

 Use MQTT over TLS for IoT device communication

 Store secrets using AWS Secrets Manager or SSM Parameter Store

✅ Typical Interface Flow Example (IoT to Cloud)

1. Sensor device (Arduino, DragonBoard, etc.) collects data

2. Device sends data to AWS IoT Core via MQTT

3. AWS Rules Engine routes data to:

o DynamoDB (for storage)

o Lambda (for processing)

o SNS (for alerts)

4. Data is visualized on a dashboard or triggers further automation

TOPIC- install and configure the AWS CLI and SDK on a Linux system

1. Install the AWS CLI on Linux

✅ Step 1: Download the Installer

bash

CopyEdit

curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o

"awscliv2.zip"

✅ Step 2: Unzip the Installer

bash

CopyEdit

unzip awscliv2.zip

✅ Step 3: Run the Installer

bash

CopyEdit

sudo ./aws/install

✅ Step 4: Verify Installation

bash

CopyEdit

aws --version

We should see something like: aws-cli/2.x.x Python/... Linux/...

🧱 2. Configure the AWS CLI

We need AWS credentials (Access Key ID and Secret Access Key) from your

IAM user.

✅ Step 1: Run configuration command

bash

CopyEdit

aws configure

✅ Step 2: Enter your credentials and preferences:

 AWS Access Key ID: AKIA...

 AWS Secret Access Key: ...

 Default region name: us-east-1 (or your preferred region)

 Output format: json (or text / table)

These settings are stored in ~/.aws/credentials and ~/.aws/config.

🧱 3. Install AWS SDK (example: Python boto3)

To use AWS services in your Python scripts, install the Boto3 SDK.

✅ Step 1: Ensure pip and Python are installed

bash

CopyEdit

sudo apt update

sudo apt install python3-pip

✅ Step 2: Install Boto3

bash

CopyEdit

pip3 install boto3

✅ Step 3: Test Boto3 in Python

python

CopyEdit

import boto3

s3 = boto3.client('s3')

response = s3.list_buckets()

print("S3 Buckets:", [bucket['Name'] for bucket in response['Buckets']])

This will list our S3 buckets using the credentials set by aws configure.

🧱 (Optional) Use AWS CLI to Test a Command

bash

CopyEdit

aws s3 ls

Lists all S3 buckets under your AWS account.

🧱 Tips

 Use IAM roles if running on EC2 instead of hardcoding keys.

 Store sensitive keys securely—never commit them to code repositories.

 Use aws sts get-caller-identity to verify which IAM identity is active.

Topic- EC2 iot

Amazon EC2 (Elastic Compute Cloud)

 What it is:

EC2 provides virtual servers (instances) in the cloud. You can launch

Linux or Windows servers on-demand and scale capacity as needed.

 Use cases:

o Host websites or web applications

o Run backend services or APIs

o Run batch jobs or data processing

o Deploy containers or virtual machines

 Key features:

o Choose instance types (CPU, RAM, storage)

o Configure security groups (firewalls)

o Attach storage (EBS volumes)

o Auto-scaling and load balancing

🧱 AWS IoT

 What it is:

AWS IoT is a managed cloud platform that lets connected devices (sensors,

embedded systems, SBCs like DragonBoard or Raspberry Pi) securely

interact with AWS services.

 Core components:

o IoT Core: Message broker for device communication via MQTT,

HTTP, or WebSockets

o IoT Device SDKs: Libraries for devices to connect and authenticate

o IoT Rules Engine: Processes messages, routes data to AWS services

(e.g., DynamoDB, Lambda)

o IoT Analytics, Device Defender, Device Management: Analytics,

security, and fleet management tools

 Use cases:

o Home automation

o Industrial IoT

o Asset tracking

o Remote monitoring and control

🧱 How EC2 and AWS IoT Work Together

 we can run your own custom backend services on EC2 instances to

process or visualize IoT data.

 IoT devices send data to AWS IoT Core, which can trigger Lambda

functions, store data in databases, or send it to an EC2-hosted application.

 EC2 can host dashboards, APIs, or machine learning models that consume

IoT data.

🧱 Basic Example Workflow

1. Device (e.g., DragonBoard) collects sensor data.

2. Device uses AWS IoT SDK to connect securely to AWS IoT Core and

publishes data via MQTT.

3. IoT Rules Engine forwards data to:

o AWS Lambda (to process)

o DynamoDB (to store)

o SNS (to notify)

4. A web app running on EC2 retrieves stored data and displays it in real time.

Topic- integrate the cloud into embedded systems

Integrating the cloud into embedded systems opens up powerful possibilities like

remote monitoring, control, data analytics, and over-the-air updates. Here’s how

you can do it step-by-step, focusing on AWS Cloud as an example:

🧱 Integrating Cloud into Embedded Systems: Overview

Why Integrate?

 Remote access & control of devices

 Data storage & analytics off-device

 Scalability for thousands or millions of devices

 Security and device management

 OTA updates and firmware management

🧱 Key Components

Component Role

Embedded Device Sensors, actuators, MCU/SBC

Connectivity Wi-Fi, Ethernet, Cellular, BLE

Cloud Platform AWS IoT, Azure IoT, Google IoT

Communication Protocols MQTT, HTTPS, CoAP

Device SDK/Agent Connects device to cloud securely

🧱 Step-by-Step Integration with AWS IoT

1. Prepare Embedded Device

 Use a microcontroller or SBC (e.g., Arduino, DragonBoard, ESP32).

 Connect sensors/actuators.

 Ensure network connectivity (Wi-Fi, Ethernet, etc.).

2. Choose Communication Protocol

 MQTT is the most popular lightweight protocol for IoT devices.

 Alternatively, HTTP/HTTPS for REST APIs or CoAP for constrained

devices.

3. Set Up AWS IoT Core

 Create an AWS account.

 Register your device (“thing”) in AWS IoT Core.

 Generate certificates and keys for secure authentication.

 Define IoT policies to control device permissions.

4. Program Device with AWS IoT SDK

 Use AWS IoT Device SDK for your language/platform (C, Python,

JavaScript, Arduino).

 Load device certificates and keys.

 Write code to connect to AWS IoT MQTT broker.

 Publish sensor data or subscribe to control commands.

5. Process and Store Data in the Cloud

 Use AWS IoT Rules to route messages to:

o DynamoDB or S3 for storage.

o Lambda functions for processing.

o SNS or IoT Analytics for alerts/analytics.

6. Create Cloud Apps

 Develop dashboards, mobile apps, or web interfaces to visualize/control

devices.

 These apps can communicate with AWS services (e.g., API Gateway +

Lambda).

🧱 Example: Simple Embedded MQTT Publisher

Here’s a pseudo-outline for an ESP32 device sending temperature data to AWS

IoT:

c

CopyEdit

#include <WiFi.h>

#include <AWS_IOT.h>

// Wi-Fi credentials

const char* ssid = "yourSSID";

const char* password = "yourPASS";

// AWS IoT endpoint and certificates

const char* host = "your-iot-endpoint.amazonaws.com";

const char* clientCRT = "-----BEGIN CERTIFICATE----- ...";

const char* clientKey = "-----BEGIN PRIVATE KEY----- ...";

const char* rootCA = "-----BEGIN CERTIFICATE----- ...";

AWS_IOT awsIot;

void setup() {

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) { delay(500); }

 awsIot.begin(host, clientCRT, clientKey, rootCA);

 awsIot.connect();

}

void loop() {

 float temperature = readTemperatureSensor();

 char payload[50];

 sprintf(payload, "{\"temperature\": %.2f}", temperature);

 awsIot.publish("sensor/temperature", payload);

 delay(60000); // Publish every minute

}

🧱 Security Best Practices

 Use mutual TLS authentication (certificates).

 Rotate keys regularly.

 Use AWS IoT policies to restrict permissions.

 Encrypt sensitive data both in transit and at rest.

🧱 Tools and Resources

 AWS IoT Device SDKs: https://aws.amazon.com/iot/sdk/

 MRAA/UPM libraries for Linux SBCs (like DragonBoard)

https://aws.amazon.com/iot/sdk/

 PlatformIO for embedded development

 MQTT brokers like Mosquitto for local testing

TOPIC- Cloud 101 for Dragonboard 410c

Cloud 101 for DragonBoard 410c

The DragonBoard 410c is a powerful Single Board Computer (SBC) capable of

connecting to cloud services to create IoT, AI, or data-driven applications. Here’s a

beginner-friendly guide to help you get started with cloud integration on this board.

1🧱 What is Cloud Computing?

 Cloud computing means using remote servers hosted on the Internet to store,

manage, and process data — instead of local servers or your personal device.

 Popular cloud platforms: AWS, Microsoft Azure, Google Cloud Platform.

 For DragonBoard, cloud enables remote data storage, real-time analytics,

device management, and scalable computing.

2🧱 Why Use Cloud with DragonBoard 410c?

 Remote access: View and control your DragonBoard from anywhere.

 Data storage: Store sensor data securely and indefinitely.

 Processing power: Offload heavy tasks (ML, AI) to cloud servers.

 Automation: Trigger actions based on sensor data.

 Scalability: Manage many devices simultaneously.

3️⃣🧱 How Does DragonBoard Connect to the Cloud?

Required Components:

 Internet connection (Wi-Fi or Ethernet)

 Cloud service account (e.g., AWS, Azure)

 Software tools (SDKs, libraries)

Common Methods:

 MQTT Protocol: Lightweight messaging for IoT devices.

 HTTP/HTTPS APIs: For RESTful communication.

 SDKs: AWS IoT SDK, Azure IoT SDK, Google IoT SDK.

 Command Line Tools: AWS CLI, Azure CLI.

4🧱 Getting Started: Example with AWS IoT on DragonBoard 410c

Step 1: Setup DragonBoard OS & Network

 Install Linux (Debian or Ubuntu)

 Connect DragonBoard to Wi-Fi or Ethernet

Step 2: Install AWS CLI & SDK

bash

CopyEdit

sudo apt update

sudo apt install python3-pip

pip3 install awscli boto3

Step 3: Configure AWS CLI

bash

CopyEdit

aws configure

(Enter your AWS Access Key, Secret, region, and output format)

Step 4: Register your device in AWS IoT Core

 Create a “Thing”

 Download certificates (for secure MQTT connection)

Step 5: Write a Python program to send sensor data via MQTT

python

CopyEdit

import boto3

import time

Example: publish data to AWS IoT

For real MQTT, use AWS IoT SDK or Paho MQTT client

print("Sending data to AWS IoT from DragonBoard!")

time.sleep(1)

Step 6: View data on AWS Console or connect it to other AWS services

5️⃣🧱 Tools and Libraries for DragonBoard 410c

Tool / Library Purpose

MRAA & UPM Access GPIO, I2C, SPI, sensors

AWS IoT Device SDK (Python, C) Connect securely to AWS IoT Core

Paho MQTT Client MQTT protocol client

Node-RED Visual programming for IoT flows

6️⃣🧱 Practical Applications

 Home automation and monitoring

 Environmental sensing (temperature, humidity)

 Industrial equipment monitoring

 Smart agriculture

 Predictive maintenance

TOPIC- Real projects using AWS Cloud services

Here are some real-world projects using AWS Cloud services that showcase

how versatile and powerful AWS can be, especially when combined with IoT

devices or embedded systems like the DragonBoard 410c:

🧱 Real AWS Cloud Projects Examples

1. Smart Home Automation System

 Overview: Control lights, thermostats, and security cameras remotely.

 AWS Services Used:

o AWS IoT Core: Connect and manage devices (sensors, smart

switches).

o AWS Lambda: Run serverless functions to process events.

o Amazon DynamoDB: Store device states and user settings.

o Amazon Alexa Skills Kit: Voice control integration.

 How it works: Devices send data/events to AWS IoT Core; Lambda

functions trigger actions (e.g., turn lights on/off); data stored for history and

analysis.

2. Industrial Equipment Predictive Maintenance

 Overview: Monitor machines with sensors to predict failures before they

happen.

 AWS Services Used:

o AWS IoT Analytics: Analyze time-series sensor data.

o Amazon SageMaker: Build and deploy machine learning models to

predict equipment failures.

o AWS IoT Greengrass: Run Lambda functions locally on edge

devices.

 How it works: Sensors stream data to AWS IoT Core → IoT Analytics

processes data → SageMaker ML models predict issues → Alerts sent via

Amazon SNS or dashboards.

3. Fleet Management and Asset Tracking

 Overview: Track vehicles, assets, or shipments in real time globally.

 AWS Services Used:

o AWS IoT Core: Receive GPS and sensor data from trackers.

o Amazon Location Service: Map and geofence assets.

o Amazon DynamoDB: Store tracking data.

o AWS Lambda: Process incoming data and trigger alerts.

 How it works: GPS devices send location data → AWS processes and

stores data → Web/mobile apps display real-time maps and alerts.

4. Smart Agriculture Monitoring

 Overview: Monitor soil moisture, weather conditions, and control irrigation

automatically.

 AWS Services Used:

o AWS IoT Core: Collect sensor data from fields.

o AWS Lambda & IoT Rules: Automate irrigation based on sensor

data.

o Amazon S3 & QuickSight: Store and visualize data trends.

 How it works: Sensors send moisture and weather data → IoT Rules trigger

Lambda to control irrigation → Data visualized for farmers.

5. Real-time Health Monitoring

 Overview: Monitor patients’ vital signs remotely and alert caregivers.

 AWS Services Used:

o AWS IoT Core: Connect wearable devices.

o AWS IoT Events: Detect anomalies in vital signs.

o Amazon SNS: Send alerts to caregivers.

o Amazon DynamoDB: Store patient data securely.

 How it works: Wearable devices publish data → IoT Events detect

abnormal conditions → SNS sends notifications → Caregivers respond

promptly.

🧱 How You Can Start

 Choose a project aligned with your interests.

 Use DragonBoard 410c or similar SBC as your device.

 Connect sensors and use AWS IoT SDK to send data.

 Process data with AWS Lambda or Analytics services.

 Build dashboards using Amazon QuickSight or third-party tools.

	TOPIC –EVOLUTION OF IOT
	Conceptual Origins (1960s–1990s)
	Early Ideas of Connected Devices

	2. Term and Vision (1999–2010)
	Coining of the Term "Internet of Things"
	Technological Enablers Begin to Emerge

	3. Commercial Emergence and Growth (2010–2015)
	Explosion of Smart Devices
	Cloud Computing and Big Data
	M2M (Machine to Machine) Communication

	4. Rapid Expansion and Industrial IoT (2015–2020)
	Key Trends
	Edge Computing
	Security Challenges

	5. Maturity and Integration (2020–Present)
	5G Networks
	Artificial Intelligence and IoT (AIoT)
	Platform Ecosystems
	Sustainability and Green IoT

	6. Future Trends (2025 and Beyond)
	Key Emerging Trends
	Projections

	Summary Table of IoT Evolution
	1. Manual and Analog Telephony (1876–1960s)
	2. Electromechanical to Electronic Switching (1960s–1980s)
	3. Digital Telephony (1980s–1990s)
	4. Mobile Telephony Networks
	1G (1980s)
	2G (1990s)
	3G (2000s)
	4G (2010s)
	5G (2020s)

	5. Internet and IP Telephony
	6. All-IP and Converged Networks
	Summary Table:
	Circuit-Switched Networks: An Overview

	How It Works
	Key Characteristics
	History and Examples
	Advantages
	Disadvantages
	Comparison with Packet-Switched Networks
	Conclusion
	Packet-Switched Networks: An Overview

	🧱 How It Works
	🚀 Key Characteristics
	📜 Examples
	📈 Advantages
	📉 Disadvantages
	Key Protocols in Packet Switching
	📡 1. Wi-Fi (Wireless Fidelity)
	📶 2. Cellular Networks
	📡 3. Bluetooth
	🌐 4. Satellite Communication
	🛰️ 5. Infrared (IR)
	📡 6. Zigbee / Z-Wave
	📡 7. NFC (Near Field Communication)
	🌍 Applications of Wireless Technologies
	🔧 Key Specifications
	🧩 Expansion & Development
	⚙️ Use Cases

	🛠️ Key Characteristics of DIY Communities
	🌐 Popular DIY Communities (Online)
	🧑🔧 DIY Categories & Sub-Communities
	🧰 Electronics & Microcontrollers
	🧵 Crafts & Maker Arts
	🛠 Home Improvement & Woodworking
	🎨 Art & Design
	🖨 3D Printing & CNC

	📍 Offline & Local DIY Communities
	💡 Benefits of Joining DIY Communities
	🔌 Built-in Interfaces for Peripherals
	🖧 USB Ports
	🎦 HDMI
	📀 MicroSD Card Slot

	📶 Wireless Peripherals (Built-in)
	🧩 Expansion Headers
	🟡 40-pin Low-Speed (LS) Connector
	Connectable peripherals include:

	🔵 60-pin High-Speed (HS) Connector
	Possible peripherals:

	🧩 Common Peripherals for DragonBoard 410c Projects
	🧠 Mezzanine Boards (Add-on Boards)
	What is Git?
	✅ Key Features of Git:
	🗂 Common Git Commands:

	🌐 What is GitHub?
	🔑 Key Features of GitHub:
	🧑🤝🧑 Used For:

	🔄 Git vs GitHub
	What is GPIO?
	🟢 GPIO Pin Modes:
	🧪 Common GPIO Tasks:

	🔌 GPIO on Arduino
	🧷 Arduino UNO GPIO Overview:

	✍️ Example: Blink an LED on Digital Pin 13
	📊 Example: Read a Button on Pin 2
	📚 GPIO Libraries (Optional but Helpful)
	🧩 Use Cases in Projects:
	Mezzanine Boards and Sensors on DragonBoard™ 410c

	🔷 What Are Mezzanine Boards?
	🧰 Common Mezzanine Boards for DragonBoard 410c
	🔌 Common Sensor Types Used with Mezzanines
	🔹 Digital Sensors
	🔸 Analog Sensors
	🔹 I2C/SPI Sensors

	📦 Grove Ecosystem (Great for Beginners)
	🧪 Example Use Case: Environmental Monitoring Station
	🛠 Development with Sensors
	Tools & Languages:

	What is AWS?
	💡 Why AWS Is Significant
	🛠️ Core AWS Services (By Category)
	☁️ Compute
	🗄️ Storage
	🛢️ Databases
	🌐 Networking
	🔒 Security & Identity
	📊 Monitoring & Management

	🧠 Use Cases of AWS
	🚀 Who Uses AWS?
	🏆 Benefits of Using AWS
	Interfacing with the AWS Cloud

	🔌 How to Interface with AWS
	1. 🖥️ AWS Management Console (Web UI)
	2. 🧪 AWS CLI (Command Line Interface)
	Example command:

	3. 💻 AWS SDKs (for Developers)
	Python Example with Boto3:

	4. 🔗 RESTful APIs (HTTP Requests)

	🧠 Interfacing IoT Devices (e.g., Arduino or DragonBoard) with AWS
	For Embedded/IoT Projects:
	Example: Sending sensor data to AWS IoT Core
	Python (MQTT Publish):

	🔐 Security in Interfacing
	✅ Typical Interface Flow Example (IoT to Cloud)
	1. Install the AWS CLI on Linux
	✅ Step 1: Download the Installer
	✅ Step 2: Unzip the Installer
	✅ Step 3: Run the Installer
	✅ Step 4: Verify Installation

	⚙️ 2. Configure the AWS CLI
	✅ Step 1: Run configuration command
	✅ Step 2: Enter your credentials and preferences:

	💻 3. Install AWS SDK (example: Python boto3)
	✅ Step 1: Ensure pip and Python are installed
	✅ Step 2: Install Boto3
	✅ Step 3: Test Boto3 in Python

	🧪 (Optional) Use AWS CLI to Test a Command
	📌 Tips
	Amazon EC2 (Elastic Compute Cloud)
	🌐 AWS IoT
	🔗 How EC2 and AWS IoT Work Together
	🚀 Basic Example Workflow
	🌐 Integrating Cloud into Embedded Systems: Overview
	Why Integrate?

	🔧 Key Components
	⚙️ Step-by-Step Integration with AWS IoT
	1. Prepare Embedded Device
	2. Choose Communication Protocol
	3. Set Up AWS IoT Core
	4. Program Device with AWS IoT SDK
	5. Process and Store Data in the Cloud
	6. Create Cloud Apps

	🔍 Example: Simple Embedded MQTT Publisher
	🔒 Security Best Practices
	🛠️ Tools and Resources
	Cloud 101 for DragonBoard 410c

	1️⃣ What is Cloud Computing?
	2️⃣ Why Use Cloud with DragonBoard 410c?
	3️⃣ How Does DragonBoard Connect to the Cloud?
	Required Components:
	Common Methods:

	4️⃣ Getting Started: Example with AWS IoT on DragonBoard 410c
	Step 1: Setup DragonBoard OS & Network
	Step 2: Install AWS CLI & SDK
	Step 3: Configure AWS CLI
	Step 4: Register your device in AWS IoT Core
	Step 5: Write a Python program to send sensor data via MQTT
	Step 6: View data on AWS Console or connect it to other AWS services

	5️⃣ Tools and Libraries for DragonBoard 410c
	6️⃣ Practical Applications
	🔥 Real AWS Cloud Projects Examples
	1. Smart Home Automation System
	2. Industrial Equipment Predictive Maintenance
	3. Fleet Management and Asset Tracking
	4. Smart Agriculture Monitoring
	5. Real-time Health Monitoring

	🚀 How You Can Start

