

 Operating System
 (LECTURE NOTES)

 Prepared by:

 Er. AKSHAY KUMAR PATRA

 (Assistant Professor)

 DEPT. OF COMPUTER SCIENCE. & ENGINEERING

Modern Engineering and Management Studies

 Banaparia, Kuruda, Balasore, Odisha.

MODULE-1

Definition of Operating System (OS)

An Operating System is system software that manages hardware and software resources of a

computer. It acts as an intermediary between users and the computer hardware.

Types of Operating Systems

Type Description Examples

Batch OS No interaction with users; jobs processed in batches. IBM OS/360

Time-Sharing

OS
Allows multiple users to use the system interactively. UNIX, MULTICS

Distributed OS
Controls a group of distinct computers and makes them

appear as a single system.
LOCUS

Real-Time OS Provides immediate processing; used in critical systems. VxWorks, RTLinux

Embedded OS Used in embedded systems (small, dedicated devices). Android (for mobile), QNX

Network OS Manages networked computers and resources.
Novell NetWare,

Windows Server

Mobile OS Designed specifically for mobile devices. iOS, Android

Functions of Operating System

 Process Management: Manages processes in a multitasking system.

 Memory Management: Allocates memory to processes and reclaims it when done.

 File System Management: Manages files on storage devices.

 Device Management: Manages device communication via drivers.

 Security and Access Control: Protects data and resources.

 User Interface: Provides GUI/CLI for user interaction.

Diagram: Basic Functionality of OS

pgsql

CopyEdit

+------------------------+

| User Programs |

+------------------------+

 |

 v

+------------------------+

| Operating System |

|------------------------|

| Process Management |

| Memory Management |

| File System |

| Device Management |

| Security & Interface |

+------------------------+

 |

 v

+------------------------+

| Hardware (CPU, RAM, |

| I/O Devices) |

+------------------------+

Abstract View of an Operating System

The OS is like a resource manager. It abstracts hardware and presents a simplified interface to

users and applications.

Diagram: OS Abstraction Layer

csharp

CopyEdit

[User Applications]

 |

[System Calls / APIs]

 |

[Operating System]

 |

[Hardware]

System Structures

System structure defines how OS components are organized.

 Monolithic Structure: All OS components are tightly integrated (e.g., early UNIX).

 Layered Structure: OS is divided into layers; higher layers use services of lower ones.

 Microkernel: Only essential services (memory, process scheduling) in kernel.

 Modular: Uses loadable modules (e.g., Linux).

 Hybrid: Combines various models (e.g., Windows NT).

System Calls

System calls are interfaces between user programs and OS. Users use system calls to request

OS services.

Categories:

 Process Control: fork(), exit()

 File Management: open(), read(), write()

 Device Management: ioctl(), read(), write()

 Information Maintenance: getpid(), alarm()

 Communication: pipe(), shmget()

Diagram: System Call Flow

sql

CopyEdit

[User Process]

 |

 System Call

 |

[Operating System Kernel]

 |

 Executes Request

Virtual Machines (VMs)

A Virtual Machine is an abstraction of a physical machine. The OS creates an environment that

appears like a complete system.

Types:

 System VMs: Provide a complete system (e.g., VMware, VirtualBox).

 Process VMs: Support a single process (e.g., Java Virtual Machine).

🧩 Diagram: Virtual Machine Layer

diff

CopyEdit

+---------------------+

| Guest OS / Software |

+---------------------+

| Virtual Machine |

+---------------------+

| Host OS / Hypervisor|

+---------------------+

| Physical Hardware |

+---------------------+

Process Concepts

A process is a program in execution. It includes the program code, program counter, stack, data

section.

States of a Process:

 New

 Ready

 Running

 Waiting

 Terminated

Diagram: Process State Transition

sql

CopyEdit

 +--------+

 | New |

 +--------+

 |

 v

 +--------+ +---------+

 | Ready |<----->| Waiting |

 +--------+ +---------+

 | ^

 v |

 +--------+ I/O or event

 |Running |-------------

 +--------+

 |

 v

 +----------+

 | Terminated|

 +----------+

 Threads

A thread is the smallest sequence of programmed instructions that can be managed

independently by the scheduler.

 Threads within the same process share code, data, and resources.

 Each thread has its own stack, registers, and counter.

 Multithreading

Multithreading allows multiple threads to exist within the context of a single process. Useful

for parallel execution and responsive applications.

Benefits:

 Better resource utilization.

 Improved application performance.

 Lower overhead than multiple processes.

Diagram: Single vs Multithreaded Process

lua

CopyEdit

Single-threaded:

+--------------+

| Code |

| Data |

| Stack |

+--------------+

Multithreaded:

+--------------+

| Code |

| Data |

| +----------+ |

| | Thread 1 | |

| | Stack | |

| +----------+ |

| | Thread 2 | |

| | Stack | |

| +----------+ |

+--------------+

MODULE -2

Process Scheduling

Definition:
Process scheduling is a key task of the operating system (OS) that determines which process runs

at a given time. It's essential for multitasking and efficient CPU utilization.

Types of Schedulers:

 Long-term Scheduler: Decides which processes are admitted to the system for

processing.

 Short-term Scheduler (CPU Scheduler): Decides which process gets the CPU next.

 Medium-term Scheduler: Swaps processes in and out of memory (used in systems with

swapping).

Scheduling Algorithms:

 First-Come, First-Served (FCFS)

 Shortest Job Next (SJN)

 Priority Scheduling

 Round Robin (RR)

 Multilevel Queue Scheduling

Goals:

 Maximize CPU utilization

 Maximize throughput

 Minimize turnaround time

 Minimize waiting time

 Minimize response time

Process Coordination

Definition:
Process coordination involves managing multiple processes so that they can operate correctly

when accessing shared resources. It's critical in concurrent programming.

Challenges:

 Race Conditions: Two or more processes access shared data concurrently and the

outcome depends on the timing of their execution.

 Critical Section Problem: A critical section is a part of the code that accesses shared

resources and must not be executed by more than one process at a time.

Synchronization

Definition:
Synchronization ensures that two or more concurrent processes do not interfere with each other

when sharing resources.

Requirements:

1. Mutual Exclusion: Only one process can enter the critical section at a time.

2. Progress: If no process is in the critical section, and some processes wish to enter, one of

them should be allowed to proceed.

3. Bounded Waiting: A bound must exist on the number of times other processes are

allowed to enter their critical sections after a process has requested entry.

Semaphores

Definition:
A semaphore is a synchronization tool that uses integer variables to control access to shared

resources.

Types:

 Counting Semaphore: Allows multiple processes to access a limited number of

resources.

 Binary Semaphore (Mutex): Only allows one process in the critical section (0 or 1

value).

Operations:

 wait() or P() – Decrements the semaphore value. If the value becomes negative, the

process is blocked.

 signal() or V() – Increments the semaphore value. If the value was negative, a blocked

process is unblocked.

Monitors

Definition:
A monitor is a high-level synchronization construct that allows safe access to shared data. It's a

collection of procedures, variables, and data structures grouped together.

Key Features:

 Only one process can be active inside the monitor at a time.

 Includes condition variables and operations:

o wait(): Waits until a condition is true.

o signal(): Wakes up a process waiting on a condition.

Monitors help abstract synchronization complexity by encapsulating shared variables and

operations.

Hardware Synchronization

Definition:
Hardware-based synchronization uses special machine-level instructions that are atomic

(indivisible).

Common Techniques:

 Test-and-Set Instruction

 Compare-and-Swap (CAS)

 Exchange

Use:

These instructions ensure that checking and setting a lock happens atomically, preventing race

conditions in low-level system programming.

 Deadlocks

Definition:
A deadlock is a situation where a set of processes are blocked because each process is waiting

for a resource held by another, creating a cycle of dependencies.

Necessary Conditions for Deadlock:

1. Mutual Exclusion: At least one resource must be held in a non-shareable mode.

2. Hold and Wait: A process holding at least one resource is waiting for more resources.

3. No Preemption: Resources cannot be forcibly taken away.

4. Circular Wait: A closed chain of processes exists, where each process holds a resource

needed by the next.

Methods for Handling Deadlocks

There are four primary strategies:

1. Deadlock Prevention

 Ensure that at least one of the necessary conditions for deadlock does not occur.

 Example: Prevent circular wait by ordering resource allocation.

2. Deadlock Avoidance

 Use algorithms to check if resource allocation leads to a safe state.

 Example: Banker's Algorithm

3. Deadlock Detection and Recovery

 Allow deadlocks to occur, detect them using algorithms, and then recover.

 Recovery methods: Kill one or more processes, or forcibly take resources back.

4. Ignore the Problem (Ostrich Algorithm)

 Often used in practice when deadlocks are rare.

 Example: Many operating systems (like UNIX) ignore deadlocks and assume they won’t

occur often.

Summary Table:

Topic Focus Key Tool/Concept

Process Scheduling CPU Allocation FCFS, RR, Priority etc.

Process Coordination Proper interaction between processes Critical Section Problem

Synchronization Controlled access to resources Mutual Exclusion

Semaphores Signal-based resource control wait(), signal()

Monitors High-level synchronization wait(), signal()

Hardware Synchronization Atomic operations Test-and-Set, CAS

Deadlocks Circular resource waiting Resource allocation graphs

Deadlock Handling Methods to resolve or prevent deadlocks Banker’s algorithm, prevention

MODULE-3

Memory Management Strategies

Memory management refers to the way an operating system handles and organizes memory

(RAM) usage for various processes. Two primary strategies are:

A. Contiguous Memory Allocation

In contiguous allocation, each process is allocated a single contiguous block of memory.

Types:

 Single Contiguous Allocation: All processes share memory in a single block. Often used

in early systems.

 Partitioned Allocation:

o Fixed Partitioning: Memory is divided into fixed-size blocks or partitions.

o Variable Partitioning: Memory is divided based on the process size.

Advantages:

 Simple and easy to implement.

 Low overhead.

Disadvantages:

 Fragmentation:

o Internal: Wasted space within allocated memory.

o External: Unused memory outside allocated blocks.

 Limits flexibility in handling varying process sizes.

B. Non-Contiguous Memory Allocation

Memory is allocated in multiple non-adjacent blocks, allowing better utilization and flexibility.

Techniques:

 Paging

 Segmentation

 Paged Segmentation

Advantages:

 Reduces external fragmentation.

 Allows efficient use of memory.

Disadvantages:

 Overhead of maintaining page/segment tables.

 Can cause page table management complexity.

 Virtual Memory Management

Virtual memory allows execution of processes that may not be completely in RAM. It gives an

illusion of a very large memory space.

Key Concepts:

 Uses secondary storage (like hard disk) as an extension of RAM.

 Divides memory into pages and frames.

 Requires address translation using page tables.

Benefits:

 Enables larger programs to run.

 Enhances multiprogramming.

 Reduces the need for contiguous memory.

 Demand Paging

Demand paging is a type of virtual memory where pages are only loaded into RAM when

needed.

Working:

 If a process accesses a page not in memory, a page fault occurs.

 The OS loads the page from disk into RAM.

 If RAM is full, a replacement policy selects a page to evict.

Advantages:

 Reduces memory usage.

 Allows more processes to be resident in memory.

Disadvantages:

 Page faults cause performance overhead.

 May lead to thrashing (excessive paging activity).

Page Placement and Replacement Policies

Page Placement:

Determines where in physical memory a new page will be loaded. Typically, any free frame can

be used (random placement), but managing frame allocation efficiently is crucial.

Page Replacement Policies:

When no free frame is available, the OS needs to replace an existing page. Common algorithms

include:

1. FIFO (First-In, First-Out)

 Removes the oldest page in memory.

 Easy to implement, but may remove frequently used pages.

2. LRU (Least Recently Used)

 Removes the page that has not been used for the longest time.

 Closer to optimal, but expensive to implement without hardware support.

3. Optimal Page Replacement

 Replaces the page that will not be used for the longest time in the future.

 Theoretically best, but not implementable in real systems.

4. Clock Algorithm (Second-Chance)

 Circular queue of pages with reference bits.

 Gives a second chance to pages before replacing them.

Summary Table

Feature Contiguous Non-Contiguous

Memory Blocks One continuous block Multiple scattered blocks

Fragmentation Internal & External Mostly internal only

Flexibility Low High

Complexity Low High

Suitable for Simple systems Modern OS with large programs

MODULE-4

File System – Basic Concepts

What is a File System ?

A file system is a method used by operating systems to store, organize, retrieve, and manage

data on storage devices like hard drives, SSDs, or USBs.

Basic Terminology:

 File: Logical unit of storage (text, binary, executable).

 Directory: Collection of files, like a folder.

 Path: Location of a file/directory.

 Metadata: Information about a file (size, timestamps, permissions).

Functions:

 Organizing files into directories.

 Naming and accessing files.

 Ensuring security and access rights.

 Managing space on storage devices.

File System Design and Implementation

Key Components:

1. File Structure: Defines how files are logically organized (e.g., flat, hierarchical).

2. Allocation Methods:

o Contiguous: Files stored in a continuous block.

o Linked: Files stored in blocks linked via pointers.

o Indexed: Uses an index block to store addresses of file blocks.

3. Directory Structures:

o Single-level

o Two-level

o Tree-structured

o Acyclic graph

4. File Access Methods:

o Sequential: Read/write in order.

o Direct (Random): Access any part of file directly.

5. File System Mounting: Making file systems available for use.

6. File Protection: Using permissions (read/write/execute).

7. Crash Recovery: Journaling or log-based recovery techniques.

Case Study: Linux File Systems

Common Linux File Systems:

 ext2/ext3/ext4: Traditional file systems.

 Btrfs: Advanced file system with features like snapshots.

 XFS: High-performance journaling file system.

Features of ext4:

 Journaling for crash recovery.

 Delayed allocation for performance.

 Extents for efficient large file storage.

 Backward compatibility with ext2/ext3.

Tools:

 fsck: File system check utility.

 mount/umount: Commands to mount/unmount file systems.

 chmod, chown, ls, stat: File permissions and metadata tools.

Mass Storage Structure

Types of Mass Storage:

 HDD (Hard Disk Drive): Rotating platters, magnetic storage.

 SSD (Solid-State Drive): No moving parts, faster, flash memory.

 RAID: Redundant Array of Independent Disks – improves performance and reliability.

Key Concepts:

 Sector: Smallest physical storage unit.

 Track: Circular path on disk surface.

 Cylinder: Set of tracks aligned vertically.

 Seek Time: Time to move the disk arm.

 Latency: Delay waiting for the sector to rotate under the head.

Disk Scheduling

Purpose:

To determine the order in which disk I/O requests are serviced.

Algorithms:

1. FCFS (First Come First Serve)

2. SSTF (Shortest Seek Time First)
3. SCAN (Elevator Algorithm): Moves head in one direction then reverses.

4. C-SCAN (Circular SCAN): Services in one direction, jumps back to start.

5. LOOK/C-LOOK: Variants that look ahead to last request rather than going to the end.

Goal:

Reduce seek time and improve I/O throughput.

Disk Management

Responsibilities:

 Disk initialization and partitioning.

 Bad block management.

 File system formatting.

 Disk quotas to limit storage per user.

 Backup and recovery procedures.

Partitioning:

Dividing a disk into multiple logical storage units.

Volume Management:

Using Logical Volume Manager (LVM) to manage disk space dynamically.

I/O Systems

Purpose:

Interface between hardware devices and the operating system.

I/O Techniques:

1. Programmed I/O: CPU controls all data transfer.

2. Interrupt-driven I/O: Devices interrupt CPU to get attention.

3. DMA (Direct Memory Access): Transfers data directly between device and memory.

I/O Components:

 Device drivers: Interface between hardware and OS.

 I/O Controllers: Manage device-specific operations.

 Buffers: Temporary storage to handle data transfer.

System Protection and Security

System Protection:

Ensures that processes do not interfere with each other.

 Access Control: Determines who can access what.

 Memory Protection: Ensures one process doesn’t corrupt another.

 CPU Protection: Timer interrupts prevent monopolization.

System Security:

Protects system from unauthorized access and attacks.

 Authentication: Verifies identity (passwords, biometrics).

 Authorization: Grants access based on identity.

 Encryption: Protects data during storage/transmission.

 Firewall & Antivirus: Defend against malware and intrusions.

Summary Table

Topic Key Focus

File System Basics Files, directories, metadata

Design & Implementation Allocation, access, protection

Linux File Systems ext4, Btrfs, tools

Mass Storage HDD, SSD, RAID

Disk Scheduling FCFS, SSTF, SCAN

Disk Management Partitioning, formatting, LVM

I/O Systems Programmed I/O, DMA, interrupts

Protection & Security Access control, authentication, encryption

MODULE-5

Distributed Systems

A Distributed System is a collection of independent computers that appear to the users of the

system as a single coherent system. Each node (computer) runs its own local operating system

and communicates with others through a network.

Key Characteristics:

 Transparency: Users don't see the complexity (location, access, replication, etc.)

 Scalability: Easy to expand by adding more nodes.

 Fault Tolerance: If one node fails, others can continue the task.

 Concurrency: Multiple processes can run concurrently on different nodes.

Examples:

 Cloud computing platforms (e.g., AWS, Google Cloud)

 Peer-to-peer networks (e.g., BitTorrent)

 Distributed databases (e.g., Cassandra)

Distributed Operating Systems (DOS)

Definition:

A Distributed Operating System is a software layer that manages a distributed system and

makes it appear as a single system to users and applications.

Responsibilities:

 Process Management: Scheduling and executing processes across nodes.

 Resource Management: Coordinating access to shared hardware/software resources.

 Communication: Facilitating message passing and data sharing between nodes.

 Fault Handling: Detecting and recovering from failures.

Types:

 Tightly Coupled Systems: More synchronized, e.g., cluster systems.

 Loosely Coupled Systems: Independent systems communicating via network.

Example DOS:

 Amoeba, Plan 9, Sprite, and some flavors of UNIX clusters.

 Distributed File Systems (DFS)

Definition:

A Distributed File System enables files stored on multiple machines to be accessed and

managed as if they are on a local disk, providing users and applications with a seamless view of

file access.

Features:

 Location Transparency: Files can be accessed without knowing their physical location.

 Replication: Files can be duplicated across nodes for fault tolerance.

 Concurrency Control: Multiple users can access or modify files concurrently.

 Caching: Files/data are cached locally to improve performance.

Common DFS Examples:

 NFS (Network File System) by Sun Microsystems

 AFS (Andrew File System)

 Google File System (GFS)

 HDFS (Hadoop Distributed File System)

Distributed Synchronization

Definition:

Distributed Synchronization ensures that operations performed on multiple nodes happen in a

coordinated fashion, preserving consistency and correctness.

Key Concepts:

a. Clock Synchronization:

In distributed systems, each node has its own clock. To ensure coordinated actions, their clocks

must be synchronized.

 Techniques: NTP (Network Time Protocol), Cristian's Algorithm, Berkeley Algorithm.

b. Mutual Exclusion:

Ensures that only one process accesses a critical section/resource at a time.

 Algorithms: Ricart-Agrawala, Lamport’s Mutex, Token Ring

c. Election Algorithms:

Used when nodes need to agree on a coordinator.

 Examples: Bully Algorithm, Ring Algorithm

d. Deadlock Handling:

Deadlocks can happen when processes wait indefinitely for resources.

 Solutions: Detection and Recovery, Avoidance (Banker's Algorithm), Prevention

e. Global State:

Capturing a consistent global state is important for fault detection and recovery.

 Example: Chandy-Lamport Algorithm

Summary Table

Component Purpose/Role

Distributed System Enables multiple computers to work together as one system

Distributed OS Manages the distributed resources and presents a unified system

Distributed File System Provides file access across multiple nodes transparently

Distributed Synchronization Coordinates timing and access among nodes to maintain consistency

 Thank You…

	Operating System
	(LECTURE NOTES)
	Prepared by:
	Er. AKSHAY KUMAR PATRA
	(Assistant Professor)
	DEPT. OF COMPUTER SCIENCE. & ENGINEERING
	Modern Engineering and Management Studies
	Banaparia, Kuruda, Balasore, Odisha.
	MODULE-1
	Definition of Operating System (OS)
	Types of Operating Systems
	Functions of Operating System
	Diagram: Basic Functionality of OS

	Abstract View of an Operating System
	Diagram: OS Abstraction Layer

	System Structures
	System Calls
	Categories:
	Diagram: System Call Flow

	Virtual Machines (VMs)
	Types:
	🧩 Diagram: Virtual Machine Layer

	Process Concepts
	States of a Process:
	Diagram: Process State Transition

	Threads
	Multithreading
	Benefits:
	Diagram: Single vs Multithreaded Process

	Process Scheduling
	Types of Schedulers:
	Scheduling Algorithms:
	Goals:

	Process Coordination
	Challenges:

	Synchronization
	Requirements:

	Semaphores
	Types:
	Operations:

	Monitors
	Key Features:

	Hardware Synchronization
	Common Techniques:
	Use:

	Deadlocks
	Necessary Conditions for Deadlock:

	Methods for Handling Deadlocks
	1. Deadlock Prevention
	2. Deadlock Avoidance
	3. Deadlock Detection and Recovery
	4. Ignore the Problem (Ostrich Algorithm)
	Summary Table:

	Memory Management Strategies
	A. Contiguous Memory Allocation
	Types:
	Advantages:
	Disadvantages:

	B. Non-Contiguous Memory Allocation
	Techniques:
	Advantages:
	Disadvantages:

	Virtual Memory Management
	Key Concepts:
	Benefits:

	Demand Paging
	Working:
	Advantages:
	Disadvantages:

	Page Placement and Replacement Policies
	Page Placement:
	Page Replacement Policies:
	1. FIFO (First-In, First-Out)
	2. LRU (Least Recently Used)
	3. Optimal Page Replacement
	4. Clock Algorithm (Second-Chance)

	Summary Table
	File System – Basic Concepts
	What is a File System ?
	Basic Terminology:
	Functions:

	File System Design and Implementation
	Key Components:

	Case Study: Linux File Systems
	Common Linux File Systems:
	Features of ext4:
	Tools:

	Mass Storage Structure
	Types of Mass Storage:
	Key Concepts:

	Disk Scheduling
	Purpose:
	Algorithms:
	Goal:

	Disk Management
	Responsibilities:
	Partitioning:
	Volume Management:

	I/O Systems
	Purpose:
	I/O Techniques:
	I/O Components:

	System Protection and Security
	System Protection:
	System Security:

	Summary Table (1)
	Distributed Systems
	Key Characteristics:
	Examples:

	Distributed Operating Systems (DOS)
	Definition:
	Responsibilities:
	Types:
	Example DOS:

	Distributed File Systems (DFS)
	Definition:
	Features:
	Common DFS Examples:

	Distributed Synchronization
	Definition:
	Key Concepts:
	a. Clock Synchronization:
	b. Mutual Exclusion:
	c. Election Algorithms:
	d. Deadlock Handling:
	e. Global State:

	Summary Table (2)

