

Software Engineering
 (LECTURE NOTES)

 Prepared by:

 Er. AKSHAY KUMAR PATRA

 (Assistant Professor)

 DEPT. OF COMPUTER SCIENCE. & ENGINEERING

Modern Engineering and Management Studies

 Banaparia,Kuruda,Balasore,Odisha.

 INTODUCTION TO SOFTWARE:-

Software is a set of programs used to operate computers and excute

specific task.It is a generic term used to refer to applications,scripts

and programs that run on a device.

 Generally software are two types

1.System software 2.Application software

System software-

System software are design to run a computers hardware and

provide platform for application to run of computer system.

Example-Operating system,Drivers

Application software-

An application software that fullfils a specific need or performs task.

Example-MS-Office,Media player,Photo editor app.

CHARACTERSTICS OF SOFTWARE:

1.Functionality

2.Reliability

3.Efficiency

4.Usability

5.Maintainability

6.Portability

Module I: Software Process Models

 1. Software Product

A software product is a set of programs and related documentation

that performs a specific set of functions for a user.

Types:

 Generic Products: Developed to be sold to a wide range of

customers (e.g., MS Word, Photoshop).

 Customized Products: Developed for a specific client or

organization (e.g., banking software for a particular bank).

Characteristics:

 Intangible

 Can be replicated at low cost

 Needs regular maintenance and updates

2. Software Crisis:

The term "software crisis" was coined in the late 1960s to describe

the growing difficulty of writing correct, reliable, and efficient

software.

Major Issues:

 Late delivery

 Exceeding budget

 Unreliable software

 Difficulty in maintenance

 Lack of skilled professionals

Causes:

 Increasing complexity of software systems

 Poor project management

 Inadequate testing

 Lack of structured development approaches

Solution:

Adoption of structured software development models and

engineering principles to manage complexity, improve quality, and

meet timelines.

 3. Handling Complexity through Abstraction and Decomposition

Abstraction

 Simplifies complexity by focusing on essential details.

 Hides internal implementation.

 Examples: Abstract Data Types, APIs.

Decomposition

 Divides a system into smaller, manageable parts (modules or

components).

 Each part handles a specific subtask.

 Encourages parallel development and easier maintenance.

These are the foundation principles of software engineering that

make large systems manageable.

4. Overview of Software Development Activities

Phases of Software Development Lifecycle (SDLC):

1. Requirement Analysis

o Understanding user needs and documenting

requirements.

2. System Design

o Architectural and detailed design.

3. Implementation (Coding)

o Translating design into code.

4. Testing

o Verifying correctness and identifying defects.

5. Deployment

o Delivering software to users.

6. Maintenance

o Bug fixing, enhancements, and updates.

Software Process Models

A software process model is a standardized format for planning,

organizing, and running a software development project.

1. Classical Waterfall Model

Phases:

1. Feasibility Study

2. Requirement & Specification

3. System Design

4. Implementation/Design

5. Coading

6. Testing(Unit/Integration)

7. Maintenance

Features:

 Linear and sequential.

 Each phase must be completed before the next begins.

Advantages:

 Simple and easy to manage.

 Well-suited for small, well-defined projects.

Disadvantages:

 No room for changes once a phase is complete.

 Late detection of errors.

2. Iterative Waterfall Model

Features:

 Similar to waterfall, but allows feedback loops between phases.

 Errors can be corrected in earlier phases.

Phases:

1. Feasibility Study

2. Requirement & Specification

3. System Design

4. Implementation/Design

5. Coading

6. Testing(Unit/Integration)

7. Maintenance

Advantages:

 More flexible than classical waterfall.

 Allows rework and refinement.

Disadvantages:

 Still not ideal for dynamic or high-risk projects.

3. Prototyping Model

Process:

1. Gather basic requirements.

2. Build a prototype.

3. Get user feedback.

4. Refine the prototype.

5. Develop final system.

Types:

 Throwaway Prototype

 Evolutionary Prototype

Advantages:

 User feedback is incorporated early.

 Better understanding of requirements.

Disadvantages:

 Misunderstanding that prototype is the final system.

 Poorly built prototypes can mislead users.

4. Evolutionary Model

Features:

 Builds the system in small, incremental versions.

 Requirements evolve over time.

 Part.1 Part.2 Part.3 Part.4

a

 a b a b c a b c d

 a a+b a+b+c a+b+c+d…

Advantages:

 Adaptable to changing requirements.

 Quick delivery of working software.

Disadvantages:

 Design issues may emerge later.

 Hard to manage system architecture.

5 Spiral Model (by Barry Boehm)

Phases in Each Spiral:

1. Planning

2. Risk Analysis

3. Engineering

4. Evaluation

Features:

 Combines iterative development with risk management.

 Ideal for large and complex projects.

Advantages:

 Focus on early risk identification.

 Frequent revisions improve quality.

Disadvantages:

 Complex and costly to implement.

 Requires expertise in risk assessment.

6. RAD (Rapid Application Development) Model

Features:

 Emphasizes quick development and delivery.

 Uses component-based construction.

Phases:

1. Requirements Planning

2. User Design

3. Construction

4. Cutover

Advantages:

 Short development cycles.

 High user involvement.

Disadvantages:

 Requires skilled developers.

 Not suitable for large, complex systems.

6. Agile Models

Agile methodologies are iterative and incremental, focusing on

customer collaboration and quick delivery.

 6.1 Extreme Programming (XP)

Key Practices:

 Pair Programming

 Test-Driven Development (TDD)

 Continuous Integration

 Refactoring

 Short release cycles

Advantages:

 High code quality

 Fast response to change

Disadvantages:

 Demands high customer involvement

 Not suitable for large teams

 6.2 Scrum

Roles:

 Product Owner: Manages the product backlog.

 Scrum Master: Facilitates the Scrum process.

 Development Team: Cross-functional members who build the

product.

Events:

 Sprint (2–4 weeks)

 Sprint Planning

 Daily Scrum

 Sprint Review

 Sprint Retrospective

Artifacts:

 Product Backlog

 Sprint Backlog

 Increment

Advantages:

 Quick feedback loop

 High adaptability

Disadvantages:

 Requires disciplined and self-organizing teams

 Scope creep if not well-managed

Comparison of Software Process Models

Model Flexibility
Risk

Management

Delivery

Speed
Ideal Use Case

Waterfall Low Low Slow
Simple, well-

defined projects

Iterative

Waterfall
Medium Low Medium

Medium-size

projects

Prototyping High Medium Fast

Projects with

unclear

requirements

Evolutionary High Medium Fast
Projects needing

quick iterations

Spiral High High Medium
High-risk, large

projects

RAD High Low Very Fast
Small-to-medium

business apps

Agile (XP,

Scrum)

Very

High
Medium Fast

Projects with

changing needs

Conclusion

Understanding various software process models helps in selecting

the right development approach based on project needs. modern

methodologies like Agile provide flexibility and fast feedback.

Module II:

Software Requirements Engineering & Structured Design

Software Requirements Engineering

 1. Requirement Gathering and Analysis

 Requirement Gathering

 The process of collecting the needs and expectations of

stakeholders.

 Techniques:

o Interviews

o Surveys/Questionnaires

o Brainstorming

o Observation

o Workshops

 Requirement Analysis

 Evaluates and organizes gathered requirements.

 Goals:

o Identify inconsistencies and ambiguities

o Prioritize requirements

o Classify as functional or non-functional

2. Functional and Non-Functional Requirements

 Functional Requirements

 Describe what the system should do.

 Include user interactions, data manipulation, business rules.

 Examples:

o Login functionality

o Generating invoices

o File upload system

 Non-Functional Requirements

 Describe how the system should perform.

 Focus on quality attributes such as:

o Performance

o Scalability

o Security

o Usability

o Reliability

 Examples:

o Response time should be less than 2 seconds

o System should support 1,000 concurrent users

3. Software Requirement Specification (SRS)

Definition

 A formal document that captures all software requirements in

detail.

Objectives:

 Serve as a contract between client and developer

 Guide design, implementation, and testing

 Reduce misunderstandings

Characteristics of a Good SRS:

 Correct

 Unambiguous

 Complete

 Consistent

 Modifiable

 Verifiable

 Traceable

4. IEEE 830 Guidelines for SRS

IEEE 830 is a standard that provides a template for writing SRS

documents.

🧾 Structure of IEEE 830 SRS:

1. Introduction

o Purpose

o Scope

o Definitions

o References

2. Overall Description

o Product perspective

o Product functions

o User characteristics

o Constraints

o Assumptions and dependencies

3. Specific Requirements

o Functional requirements

o Non-functional requirements

o External interfaces

 5. Decision Tables and Decision Trees

Decision Table

 A tabular representation of conditions and actions.

 Useful for representing complex business logic.

Example Table:

Conditions Rule 1 Rule 2

Age > 18 Yes No

Has ID Yes Yes

Action Allow Deny

Decision Tree

 A graphical representation of decisions.

 Each internal node: a condition

 Each leaf node: an action

Part B: Structured Analysis and Design

6. Overview of Design Process

Design Phase

Transforms requirements into a blueprint for software construction.

Steps:

1. Architectural Design (high-level)

2. Detailed Design (module-level)

3. Interface Design

4. Data Design

7. High-Level and Detailed Design

 High-Level Design (HLD)

 Also called architectural design.

 Focuses on:

o Module decomposition

o Interfaces between modules

Detailed Design (LLD)

 Focuses on:

o Internal logic of modules

o Algorithms

o Data structures

8. Cohesion and Coupling

Cohesion – Measure of how strongly related functions within a

module are.

Types (Best to Worst):

 Functional

 Sequential

 Communicational

 Procedural

 Temporal

 Logical

 Coincidental

 High cohesion is desirable.

 Coupling – Measure of interdependence between modules.

Types (Worst to Best):

 Content

 Common

 Control

 Stamp

 Data

 No Coupling

 Low coupling is desirable.

9. Modularity and Layering

Modularity

 Divides the system into independent modules.

 Improves:

o Maintainability

o Reusability

o Testability

 Layering

 Organizes software into layers (e.g., UI, Business Logic, Data

Access).

 Promotes separation of concerns.

10. Function-Oriented Design

 A. Structured Analysis using DFD (Data Flow Diagram)

DFD:

 Represents data flow through a system.

 Symbols:

 Process: Circle or rounded rectangle

 Data Store: Open-ended rectangle

 External Entity: Square

 Data Flow: Arrow

DFD Levels:

 Level 0: Context diagram

 Level 1: Top-level processes

 Level 2+: Detailed subprocesses

 B. Structured Design using Structure Chart

 Structure Chart:

 Represents hierarchical module structure.

 Shows:

o Module calls

o Data transfer

o Control flow

Elements:

 Rectangles: Modules

 Arrows: Control/data flow

Part C: Object-Oriented Analysis and Design (OOAD)

11. Basic Concepts of OOAD

 Object-Oriented Analysis (OOA)

 Identifies system objects and their interactions based on

requirements.

 Object-Oriented Design (OOD)

 Defines system architecture using objects and classes.

 OOAD Concepts:

 Object: An entity with state and behavior

 Class: Blueprint for objects

 Encapsulation: Data hiding

 Abstraction: Focus on essential details

 Inheritance: Code reuse

 Polymorphism: Different implementations of the same

interface

Part D: User Interface (UI) Design

12. User Interface Design

 Goals of UI Design:

 Easy to learn

 Efficient to use

 Error-resistant

 Visually pleasing

Principles:

 Consistency

 Feedback

 Visibility

 User control

 Error prevention

 13. Types of Interfaces

 A. Command Language Interface (CLI)

 User types commands.

 Examples: Terminal, Command Prompt

 Pros: Powerful, precise

 Cons: Hard for beginners

B. Menu-based Interface

 Users select options from lists.

 Pros: Easy to navigate

 Cons: Limited flexibility

 C. Iconic (Graphical) Interface

 Uses icons, buttons, visual elements.

 Examples: Windows, Android, iOS

 Pros: Intuitive and user-friendly

 Cons: Resource-intensive

Summary Table

Topic Key Points

Requirement Gathering Interviews, surveys, document analysis

Functional Requirements Define what system should do

Non-Functional

Requirements
Define how system performs

SRS
Formal document capturing all

requirements

IEEE 830 Standard format for SRS

Decision Table/Tree Represent complex decision logic

High/Low-Level Design Architecture vs module logic

Cohesion and Coupling Good design = high cohesion + low

Topic Key Points

coupling

DFD Data-centric modeling technique

Structure Chart Function-oriented module hierarchy

OOAD Object-focused system modeling

UI Design
Design user-friendly and accessible

interfaces

Conclusion

This module emphasizes clear requirement specification, strong

system architecture, and effective user interface design. Mastering

these principles is essential for creating maintainable, user-friendly,

and robust software systems.

Module III: Coding and Software Testing Techniques

 1. Coding

Definition:

Coding is the process of translating design into a machine-readable

format using a programming language.

Key Aspects:

 Readability: Code should be clean, readable, and well-

commented.

 Maintainability: Use consistent naming conventions,

indentation, and modular programming.

 Reusability: Code should be reusable across different modules

or projects.

 Error Handling: Include proper exception and error-handling

mechanisms.

 2. Code Review

Definition:

A systematic examination of source code by developers other than

the author.

Types of Code Reviews:

 Formal Reviews: Includes inspection meetings and detailed

checklists.

 Informal Reviews: Peer reviews, over-the-shoulder reviews.

 Automated Reviews: Using tools like SonarQube,

CodeClimate, etc.

Benefits:

 Improves code quality.

 Identifies bugs early.

 Promotes knowledge sharing among developers.

3. Documentation

Definition:

Creating supporting documents for the codebase to help future

maintenance and scalability.

Types:

 Internal Documentation: Code comments, inline explanations.

 External Documentation: User manuals, system design, API

docs.

 4. Software Testing

Purpose:

To ensure the software product is reliable, meets requirements, and

is bug-free.

4.1 Unit Testing

Definition:

Testing individual units/components of software.

 Performed by developers.

 Tools: JUnit (Java), NUnit (.NET), PyTest (Python).

 Focus: Functions, methods, classes.

4.2 Black-box Testing

Definition:

Testing without knowledge of internal code structure.

 Based on input-output behavior.

 Techniques: Equivalence partitioning, boundary value

analysis.

 Suitable for: System and acceptance testing.

4.3 White-box Testing

Definition:

Testing with knowledge of the internal workings of the application.

 Focus: Path coverage, branch coverage.

 Techniques: Statement testing, condition testing.

 Suitable for: Unit testing.

4.4 Cyclomatic Complexity

Definition:

A metric to measure the complexity of a program by counting

independent paths.

 Formula: M = E - N + 2P

(E = edges, N = nodes, P = connected components)

 Lower complexity = better maintainability.

 Helps in determining the minimum number of test cases.

4.5 Coverage Analysis

Definition:

Determines which parts of the code were executed (covered) during

testing.

Types:

 Statement Coverage

 Branch Coverage

 Path Coverage

 Function Coverage

4.6 Mutation Testing

Definition:

Involves modifying program code slightly (creating mutants) to test

the effectiveness of test cases.

 If test cases fail for mutant versions → strong test cases.

 Helps ensure robustness of testing suite.

4.7 Debugging Techniques

Definition:

The process of finding and fixing bugs in the code.

Methods:

 Print debugging: Using print/log statements.

 Breakpoint debugging: Using IDE breakpoints.

 Backtracking: Tracing the code from output to source.

 Automated debugging tools: GDB, Visual Studio Debugger.

 4.8 Integration Testing

Definition:

Testing combined parts/modules of an application to verify they

work together.

 Top-down: Test from main module downwards.

 Bottom-up: Start with lower-level modules.

 Big Bang: All components integrated and tested at once.

4.9 System Testing

Definition:

Testing the complete, integrated system to verify it meets the

specified requirements.

 Conducted by independent testers.

 Includes: Functional, non-functional, performance, security

testing.

4.10 Regression Testing

Definition:

Testing the software after changes (bug fixes, updates) to ensure

existing functionality still works.

 Ensures that new changes haven’t introduced new bugs.

 Can be automated for efficiency.

5. Software Reliability

Definition:

The probability that software will work without failure under given

conditions for a specified period.

Key Concepts:

 MTTF (Mean Time to Failure)

 MTTR (Mean Time to Repair)

 MTBF (Mean Time Between Failures)

 Fault Tolerance: Ability to continue operation despite faults.

 Redundancy: Using backup systems to increase reliability.

Summary Table

Concept Key Idea Tools/Examples

Coding Writing functional code Any IDE/language

Code Review Peer review of code GitHub, Bitbucket

Documentation
Internal & external

descriptions
Markdown, Doxygen

Unit Testing Test individual functions JUnit, PyTest

Black-box
Test with no internal

view
Functional Testing

White-box
Test with internal

knowledge

Statement/Branch

Testing

Cyclomatic Measure of code Manual or tools

Concept Key Idea Tools/Examples

Complexity complexity

Coverage Analysis Measure of code tested Coverage.py, Istanbul

Mutation Testing Test quality of test cases PIT, MutPy

Debugging Finding and fixing bugs GDB, Print logs

Integration Testing
Testing module

interaction
Top-down, Bottom-up

System Testing Whole system validation End-user testing

Regression Testing Re-test after changes Selenium, JUnit

Software

Reliability

Probability of failure-

free operation

MTTF, MTBF

metrics

Module IV: Maintenance – Detailed

1. Basic Concepts in Software Reliability

Definition:

Software reliability refers to the probability of a software system

operating without failure under given conditions for a specified

period of time.

Importance:

 Critical in safety systems (e.g., aviation, medical).

 Enhances user trust and system longevity.

Key Factors:

 Code quality.

 Testing completeness.

 Fault tolerance.

 Development process maturity.

2. Reliability Measures

Common Metrics:

Measure Description

MTTF (Mean Time To

Failure)

Average time the software operates

before failure.

MTTR (Mean Time To

Repair)

Average time taken to repair a system

after failure.

MTBF (Mean Time MTTF + MTTR; often used to assess

Measure Description

Between Failures) system availability.

Failure Rate Number of failures per unit of time.

3. Reliability Growth Modeling

Purpose:

To estimate and improve software reliability over time based on

observed failures during testing.

Common Models:

 Jelinski-Moranda Model: Assumes fixed number of initial

faults.

 Goel-Okumoto Model: Uses exponential distribution to model

fault detection.

 Musa Model: Considers execution time rather than calendar

time.

4. Quality and SEI Capability Maturity Model (CMM)

SEI CMM Overview:

Developed by the Software Engineering Institute (SEI) to improve

software process maturity.

CMM Levels:

Level Description

Level Description

1 – Initial Ad hoc and chaotic process.

2 – Repeatable Basic project management processes established.

3 – Defined Standardized and documented processes.

4 – Managed Quantitative quality goals established.

5 – Optimizing Continuous process improvement in place.

5. Characteristics of Software Maintenance

Definition:

The process of modifying a software system after delivery to correct

faults, improve performance, or adapt to a changed environment.

Types of Maintenance:

 Corrective: Fixing bugs.

 Adaptive: Updating software for a new environment (e.g., OS

update).

 Perfective: Enhancing features or performance.

 Preventive: Improving future maintainability.

Challenges:

 Poor documentation.

 Code complexity.

 Developer turnover.

6. Software Reverse Engineering

Definition:

Analyzing software to identify components and their

interrelationships to extract design and specifications.

Applications:

 Understanding legacy systems.

 Security analysis.

 Migration and documentation.

Steps:

1. Code analysis.

2. Abstraction extraction.

3. Design recovery.

7. Software Reengineering

Definition:

Rebuilding existing software to improve maintainability or

performance without changing its functionality.

Process:

1. Reverse engineering.

2. Analysis.

3. Redesign.

4. Forward engineering.

Benefits:

 Cost-effective.

 Reduces complexity.

 Improves quality.

8. Software Reuse

Definition:

Using existing software artifacts (code, designs, documentation) in

new software systems.

Levels:

 Code-level reuse: Libraries, functions.

 Design-level reuse: Architecture, patterns.

 Component-level reuse: Services, modules.

Advantages:

 Faster development.

 Lower costs.

 Higher quality through tested components.

Emerging Topics in Software Engineering

9. Client-Server Software Engineering

Definition:

A software architecture model where clients request services and

servers provide them.

Features:

 Distributed computing.

 Centralized server logic.

 Examples: Web applications, email systems.

Advantages:

 Easier maintenance.

 Better resource sharing.

10. Service-Oriented Architecture (SOA)

Definition:

A design pattern where software components provide services to

other components via well-defined interfaces.

Key Concepts:

 Loose coupling: Services are independent.

 Reusability: Services can be reused across systems.

 Interoperability: Based on open standards (SOAP, REST).

Benefits:

 Scalability.

 Flexibility.

 Easy integration.

11. Software as a Service (SaaS)

Definition:

A cloud-based delivery model where software is hosted centrally and

accessed over the Internet.

Examples:

 Google Workspace.

 Microsoft 365.

 Salesforce.

Characteristics:

 Subscription-based.

 No need for local installation.

 Automatic updates.

Advantages:

 Reduced IT costs.

 Accessibility.

 Scalability.

📌 Summary Table

Topic Key Focus

Software Reliability Failure-free operation over time

Reliability Measures MTTF, MTTR, MTBF

Growth Models Predicting reliability improvement

SEI CMM Process maturity model

Maintenance Corrective, Adaptive, Perfective, Preventive

Reverse Engineering Understanding legacy systems

Reengineering Enhancing existing systems

Topic Key Focus

Reuse Using existing components

Client-Server Distributed model

SOA Modular service interaction

SaaS Web-based software delivery

 Thank you...

	Software Engineering
	(LECTURE NOTES)
	Prepared by:
	Er. AKSHAY KUMAR PATRA
	(Assistant Professor)
	DEPT. OF COMPUTER SCIENCE. & ENGINEERING
	Modern Engineering and Management Studies
	Banaparia,Kuruda,Balasore,Odisha.
	INTODUCTION TO SOFTWARE:-
	Software is a set of programs used to operate computers and excute specific task.It is a generic term used to refer to applications,scripts and programs that run on a device.
	1. Software Product
	Types:
	Characteristics:
	Major Issues:
	Causes:
	Solution:

	3. Handling Complexity through Abstraction and Decomposition
	Abstraction
	Decomposition

	4. Overview of Software Development Activities
	Phases of Software Development Lifecycle (SDLC):

	Software Process Models
	1. Classical Waterfall Model
	Phases:
	Features:
	Advantages:
	Disadvantages:

	2. Iterative Waterfall Model
	Features:
	Phases:
	Advantages:
	Disadvantages:

	3. Prototyping Model
	Process:
	Types:
	Advantages:
	Disadvantages:

	4. Evolutionary Model
	Features:
	a a+b a+b+c a+b+c+d…
	Advantages:
	Disadvantages:

	5 Spiral Model (by Barry Boehm)
	Phases in Each Spiral:
	Features:
	Advantages:
	Disadvantages:

	6. RAD (Rapid Application Development) Model
	Features:
	Phases:
	Advantages:
	Disadvantages:

	6. Agile Models
	Key Practices:
	Advantages:
	Disadvantages:
	6.2 Scrum
	Roles:
	Events:
	Artifacts:
	Advantages:
	Disadvantages:

	Comparison of Software Process Models
	Conclusion
	Module II:
	Software Requirements Engineering & Structured Design
	Software Requirements Engineering
	1. Requirement Gathering and Analysis
	Requirement Gathering
	Requirement Analysis

	2. Functional and Non-Functional Requirements
	Functional Requirements
	Non-Functional Requirements

	3. Software Requirement Specification (SRS)
	Definition
	Objectives:
	Characteristics of a Good SRS:

	4. IEEE 830 Guidelines for SRS
	🧾 Structure of IEEE 830 SRS:

	5. Decision Tables and Decision Trees
	Decision Table
	Decision Tree

	Part B: Structured Analysis and Design
	6. Overview of Design Process
	Design Phase
	Steps:

	7. High-Level and Detailed Design
	High-Level Design (HLD)
	Detailed Design (LLD)

	8. Cohesion and Coupling
	Cohesion – Measure of how strongly related functions within a module are.
	Coupling – Measure of interdependence between modules.

	9. Modularity and Layering
	Modularity
	Layering

	10. Function-Oriented Design
	A. Structured Analysis using DFD (Data Flow Diagram)
	DFD:
	Symbols:
	DFD Levels:

	B. Structured Design using Structure Chart
	Structure Chart:

	Part C: Object-Oriented Analysis and Design (OOAD)
	11. Basic Concepts of OOAD
	Object-Oriented Analysis (OOA)
	Object-Oriented Design (OOD)
	OOAD Concepts:

	Part D: User Interface (UI) Design
	12. User Interface Design
	Goals of UI Design:
	Principles:

	13. Types of Interfaces
	A. Command Language Interface (CLI)
	B. Menu-based Interface
	C. Iconic (Graphical) Interface

	Conclusion (1)
	Module III: Coding and Software Testing Techniques
	1. Coding
	Key Aspects:

	2. Code Review
	Types of Code Reviews:
	Benefits:

	3. Documentation
	Types:

	4. Software Testing
	4.1 Unit Testing
	4.2 Black-box Testing
	4.3 White-box Testing
	4.4 Cyclomatic Complexity
	4.5 Coverage Analysis
	4.6 Mutation Testing
	4.7 Debugging Techniques
	4.8 Integration Testing
	4.9 System Testing
	4.10 Regression Testing

	5. Software Reliability
	Key Concepts:

	Summary Table

	Module IV: Maintenance – Detailed
	1. Basic Concepts in Software Reliability
	Definition:
	Importance:
	Key Factors:

	2. Reliability Measures
	Common Metrics:

	3. Reliability Growth Modeling
	Purpose:
	Common Models:

	4. Quality and SEI Capability Maturity Model (CMM)
	SEI CMM Overview:
	CMM Levels:

	5. Characteristics of Software Maintenance
	Definition:
	Types of Maintenance:
	Challenges:

	6. Software Reverse Engineering
	Definition:
	Applications:
	Steps:

	7. Software Reengineering
	Definition:
	Process:
	Benefits:

	8. Software Reuse
	Definition:
	Levels:
	Advantages:

	Emerging Topics in Software Engineering
	9. Client-Server Software Engineering
	Definition:
	Features:
	Advantages:
	10. Service-Oriented Architecture (SOA)
	Definition: (1)
	Key Concepts:
	Benefits:
	11. Software as a Service (SaaS)
	Definition: (2)
	Examples:
	Characteristics:
	Advantages: (1)

	📌 Summary Table

