

 SPM
 Software Project Management

 (LECTURE NOTES)

 Prepared by:

 Er. AKSHAY KUMAR PATRA

 (Assistant Professor)

 DEPT. OF COMPUTER SCIENCE. & ENGINEERING

Modern Engineering and Management Studies

 Banaparia, Kuruda, Balasore, Odisha.

Module-1

Software Project Management

Software Project Management (SPM) is the application of knowledge, skills, tools, and

techniques to plan, execute, and control software projects. The goal is to deliver high-quality

software on time, within budget, and according to user requirements.

Software Projects

Software projects involve activities such as requirement gathering, designing, coding, testing,

deployment, and maintenance. These are distinct from other types of engineering projects

because of:

 Intangibility: Software is not physical.

 Complexity: Software systems often have many interconnected parts.

 Flexibility: Software can be changed more easily than hardware.

 Uncertainty: Requirements often evolve during development.

Ways of Categorizing Software Projects

Software projects can be categorized by several dimensions:

 Size: Small (e.g., a website), Medium (e.g., inventory system), Large (e.g., ERP system).

 Application domain: Web, mobile, embedded, enterprise, etc.

 Complexity: Simple UI to complex distributed systems.

 Development model: Agile, Waterfall, V-model, Spiral, etc.

 Risk: Safety-critical, business-critical, low-risk.

Problems with Software Projects

Common problems include:

 Unclear requirements

 Scope creep (uncontrolled changes)

 Poor planning

 Underestimation of effort/time

 Lack of skilled personnel

 Poor communication among stakeholders

 Inadequate testing

 Failure to meet deadlines or budget

Project Life Cycle

Typical phases in a software project life cycle:

1. Initiation: Define the project’s purpose, feasibility.

2. Planning: Schedule, resources, risks, costs.

3. Execution: Development and testing.

4. Monitoring & Control: Track progress, manage changes.

5. Closure: Final delivery and project review.

Project Management

Involves:

 Planning: Define scope, objectives, schedule.

 Organizing: Build a team and allocate resources.

 Leading: Direct and motivate team members.

 Controlling: Monitor performance, quality, and costs.

Setting Objectives

Effective objectives should be SMART:

 Specific

 Measurable

 Achievable

 Relevant

 Time-bound

Example: "Deliver a working prototype of the booking system in 3 months."

Stakeholders

Stakeholders are individuals or groups affected by the project or its outcome:

 Internal: Project team, managers, developers.

 External: Clients, customers, suppliers, regulatory bodies.

9. Project Team

A typical software project team includes:

 Project Manager

 Developers

 Testers

 Business Analysts

 UI/UX Designers

 DevOps Engineers

Team roles should be well-defined to avoid overlap and confusion.

Step Wise: An Overview of Project Planning

The Step Wise method is a structured approach to planning:

1. Identify project scope and objectives.

2. Identify project infrastructure.

3. Analyze project characteristics.

4. Identify products and activities.

5. Estimate effort for each activity.

6. Identify and allocate resources.

7. Create a schedule.

8. Risk analysis.

9. Monitor and revise the plan.

Project Evaluation

Evaluation ensures the project is justified and feasible:

 Technical feasibility: Can we build it?

 Economic feasibility: Is it worth it?

 Operational feasibility: Will it work in practice?

 Legal feasibility: Any legal constraints?

Selection of Appropriate Project Approach

Common approaches:

 Waterfall: Linear, sequential.

 Agile: Iterative, incremental.

 Spiral: Risk-driven, iterative.

 V-Model: Emphasizes verification and validation.

Selection depends on project size, complexity, client needs, and team experience.

Software Size Estimation

Estimating size is crucial for planning and pricing:

 Lines of Code (LOC)
 Function Points (FP) – measures functionality from the user’s perspective.

 Use Case Points (UCP) – based on use case complexity.

Estimation of Effort & Duration

Common techniques:

 Expert judgment
 Delphi method (consensus from experts)

 Analogy-based estimation

 Parametric models (like COCOMO)

COCOMO Models (Constructive Cost Model)

Developed by Barry Boehm, COCOMO estimates effort and time based on project size (in

KLOC):

 Basic COCOMO: Uses a simple formula.

 Intermediate COCOMO: Adds cost drivers (e.g., complexity, reliability).

 Detailed COCOMO: Includes phase-wise effort estimation.

Effort (in person-months) = a × (KLOC)^b

Where a and b are constants based on project type (organic, semi-detached, embedded).

Putnam’s Work (SLIM Model)

Putnam’s model uses Rayleigh curve to model effort over time. The SLIM (Software Life-cycle

Management) model is used to estimate staffing levels and schedule.

Key concept: Effort = (Size / Productivity)^3

Jensen’s Model

A refinement of Putnam's model, Jensen’s model incorporates multiple parameters such as team

size and productivity. It's based on empirical data and considers the impact of staff buildup and

decay.

Halstead’s Software Science

Introduced by Maurice Halstead, this model measures software complexity using:

 n₁ = number of distinct operators

 n₂ = number of distinct operands

 N₁ = total number of operators

 N₂ = total number of operands

From these, Halstead defines:

 Program Length = N = N₁ + N₂
 Vocabulary = n = n₁ + n₂
 Volume = N × log₂(n)

 Effort = Volume / (2 × Level)

Used for estimating program complexity, maintainability, and effort.

MODULE-2

1. Activity Planning in Software Project Management

a. Project Schedules

Refers to the timeline of tasks and milestones in a software project. Scheduling ensures that work

is completed on time, within scope, and on budget.

b. Sequencing and Scheduling Projects

 Sequencing: Determining the order of project activities.

 Scheduling: Assigning start and end dates based on dependencies, resources, and

durations.

2. Network Planning Models

a. AON (Activity on Node)

 Nodes represent activities.

 Arrows show dependencies.

 Easier to read and more commonly used in software project management.

b. AOA (Activity on Arrow)

 Arrows represent activities.

 Nodes represent events (start/end).

 Less intuitive for complex software projects.

3. Identifying Critical Activities

 Critical activities directly affect the project deadline.

 Found using Critical Path Method (CPM).

 Critical Path: The longest path through the project with no slack time.

 Any delay in these activities will delay the entire project.

4. Crashing and Fast Tracking

a. Crashing

 Adding extra resources to reduce activity duration.

 Increases cost but shortens schedule.

b. Fast Tracking

 Performing activities in parallel that were originally scheduled sequentially.

 Increases risk but may reduce duration.

5. Risk Management in Software Projects

a. Risk Categories

 Technical risks (e.g., new tech, performance issues)

 Project management risks (e.g., estimation errors)

 Organizational risks (e.g., team turnover)

 External risks (e.g., regulations, market shifts)

b. Risk Planning, Management, and Control

 Risk Planning: Identifying risks and planning responses.

 Risk Management: Monitoring and managing risks during the project.

 Risk Control: Implementing mitigation or contingency plans when risks materialize.

c. Evaluating Risks to the Schedule

 Analyze risk impact on schedule.

 Use techniques like Monte Carlo Simulation or PERT analysis.

6. PERT (Program Evaluation and Review Technique)

 Used for time estimation in uncertain situations.

 Estimates based on:

o Optimistic (O)

o Pessimistic (P)

o Most Likely (M)

o Expected Time (TE):

TE=O+4M+P6TE = \frac{O + 4M + P}{6}TE=6O+4M+P

 Useful for managing uncertainty in software projects.

7. Resource Allocation

a. Identifying Resource Requirements

 Determine the people, tools, and technologies needed.

 Includes developers, testers, project managers, etc.

b. Scheduling Resources

 Assign resources to tasks.

 Avoid over-allocation and resource conflicts.

c. Creating Critical Paths

 Align critical path with resource constraints.

 Consider resource availability while calculating the path.

d. Publishing Schedule

 Share finalized schedule with stakeholders.

 Should include milestones, dependencies, and resource plans.

e. Cost Schedules

 Combine schedule with cost estimates.

 Useful for budgeting and cost control.

f. Sequence Schedule

 Ensure the logical flow of activities.

 Maintain dependencies and optimal task order.

8. CPM (Critical Path Method)

 Determines the sequence of critical tasks.

 Used for identifying the shortest time to complete the project.

 Highlights which tasks can be delayed without affecting the project.

9. Gantt Chart

 Visual timeline of project activities.

 Shows start/end dates, duration, dependencies.

 Ideal for tracking progress and milestones.

10. Staffing in Software Projects

 Assigning people to project roles.

 Based on skills, experience, and availability.

 May use RACI matrix (Responsible, Accountable, Consulted, Informed).

11. Organizing a Software Engineering Project

 Define project structure (Agile, Waterfall, Hybrid).

 Set up teams, roles, responsibilities.

 Establish communication plans, documentation standards, version control, and

development methodologies.

Summary Diagram (Text-based View):
pgsql

CopyEdit

Activity Planning

 ├── Project Scheduling

 ├── Sequencing & Scheduling

 ├── Network Models: AON & AOA

 ├── Critical Path (CPM)

 ├── Crashing / Fast Tracking

Risk Management

 ├── Categories: Technical, Mgmt, Org, External

 ├── Planning / Control

 ├── PERT for Schedule Risk

Resource Allocation

 ├── Identify Requirements

 ├── Schedule Resources

 ├── Create & Sequence Schedule

 ├── Publish & Track Cost

Project Organization

 ├── Gantt Charts

 ├── Staffing

 ├── Team Structure & Processes

MODULE-3

1. Monitoring and Control – Visualizing Progress

Monitoring and control are essential processes in project management that ensure a project

stays on track concerning scope, time, cost, and quality.

Key Concepts:

 Tracking Progress: Comparing actual performance against the planned schedule.

 Visual Tools:
o Gantt Charts: Show task durations and progress.

o Burn-down Charts: Common in Agile, show work remaining over time.

o Dashboards: Provide at-a-glance updates on KPIs (Key Performance Indicators).

Purpose:

 Identify deviations.

 Take corrective actions early.

 Facilitate stakeholder communication.

2. Earned Value Analysis (EVA)

EVA is a technique that integrates scope, schedule, and cost to assess project performance and

progress objectively.

Key Metrics:

 Planned Value (PV): Budgeted cost of work planned.

 Earned Value (EV): Budgeted cost of work actually performed.

 Actual Cost (AC): Actual cost incurred for performed work.

Performance Indicators:

 Cost Performance Index (CPI) = EV / AC

 Schedule Performance Index (SPI) = EV / PV

 Estimate at Completion (EAC): Forecast of final project cost.

Benefits:

 Provides early warning of performance issues.

 Allows forecast of future performance.

3. Managing People and Organizing Teams

People are the most critical asset in software projects. Effective management ensures motivation,

productivity, and collaboration.

Key Areas:

 Motivation Theories: Maslow’s hierarchy, Herzberg’s two-factor theory.

 Conflict Resolution: Negotiation, mediation, and consensus building.

 Communication: Regular meetings, open channels, feedback loops.

 Leadership Styles: Autocratic, democratic, laissez-faire depending on team maturity.

Team Building:

 Forming → Storming → Norming → Performing → Adjourning (Tuckman’s model).

4. Organizational Structures

Different organizational setups affect communication, authority, and project execution.

Types:

1. Functional: Departments like IT, HR. Projects handled within departments.

2. Projectized: Full authority given to project managers.

3. Matrix: Mix of both. Can be:

o Weak Matrix: PM has limited power.

o Strong Matrix: PM has more control.

o Balanced Matrix: Shared authority.

Implications:

 Communication lines.

 Resource availability.

 Decision-making efficiency.

5. Planning for Small Projects

Small projects require a lightweight and flexible planning approach.

Key Practices:

 Simplified Documentation: Focus on key deliverables.

 Timeboxing: Limit tasks to fixed time periods.

 Flexible Scope: Often evolving, less rigid.

 Minimal Resources: Often involves a small team, requiring multi-skilled members.

Tools:

 Kanban Boards, Trello, Google Sheets.

6. Case Studies

Real-world examples help illustrate how theory is applied.

Common Lessons:

 Miscommunication leads to delays and cost overruns.

 Overly rigid planning can fail in dynamic environments.

 Strong leadership and stakeholder engagement are vital.

Example:

 Denver Airport Baggage System: A classic failure due to poor requirement analysis and

over-automation.

7. Agile Development

Agile is an iterative and incremental approach focusing on flexibility, collaboration, and

customer feedback.

Core Principles (from Agile Manifesto):

 Individuals and interactions > processes and tools

 Working software > comprehensive documentation

 Customer collaboration > contract negotiation

 Responding to change > following a plan

Agile Practices:

 Scrum: Roles (Scrum Master, Product Owner), Sprints, Stand-ups.

 Kanban: Continuous flow, WIP limits.

 XP (Extreme Programming): Pair programming, TDD, frequent releases.

Benefits:

 Faster delivery.

 Better quality through continuous feedback.

 Improved team morale and stakeholder engagement.

Summary Table:

Topic Purpose Tools/Methods

Monitoring & Control Ensure project stays on track
Gantt, Dashboards, Burn-down

Charts

Earned Value Analysis Measure cost and schedule performance EV, PV, AC, CPI, SPI

Managing People Build cohesive, motivated teams Leadership styles, Communication

Organizational

Structures
Define authority and workflow Functional, Matrix, Projectized

Planning for Small

Projects

Efficient execution with limited

scope/resources
Timeboxing, Kanban

Case Studies Learn from real-world success/failure Denver Airport, FBI Sentinel

Agile Development Deliver value iteratively and adaptively Scrum, Kanban, XP

MODULE-4

1. Software Quality & Quality Engineering

Software Quality

 Refers to how well software conforms to functional and non-functional requirements.

 Attributes include reliability, usability, maintainability, efficiency, portability, etc.

 Quality is both conformance to requirements and fitness for use.

Quality Engineering

 A discipline combining software engineering and quality management to ensure the

delivery of high-quality products.

 Involves planning, assurance, control, and improvement.

 Emphasizes proactive processes, automated testing, and continuous improvement.

2. Defining Quality Requirements

 Done during the requirements phase.

 Includes both functional (e.g., login process) and non-functional requirements (e.g.,

performance, usability).

 Techniques: quality attribute scenarios, goal-question-metric (GQM) approach.

 Helps in setting measurable targets for software quality.

3. Quality Standards

Common Software Quality Standards:

 ISO 9000: Generic quality management standards.

 ISO 9001: Focused on quality management systems (QMS), applicable across industries.

 IEEE standards: Specifically for software processes and documentation.

 CMMI (Capability Maturity Model Integration).

Importance:

 Promote consistency and customer confidence.

 Enable certification and benchmarking.

4. Quality Practices & Conventions

 Coding standards (e.g., naming conventions, indentation).

 Code reviews, pair programming.

 Version control, unit testing, continuous integration.

 Use of tools like SonarQube for static code analysis.

5. ISO 9000 & ISO 9001

ISO 9000

 A family of standards for quality management systems.

 Lays down the fundamentals and vocabulary.

ISO 9001

 Specifies requirements for a QMS.

 Key principles: customer focus, leadership, process approach, improvement.

 Certification indicates a company maintains quality management processes.

6. Software Quality Metrics (Matrices)

 Product Metrics: Measure software product (e.g., defect density, cyclomatic

complexity).

 Process Metrics: Measure process effectiveness (e.g., defect removal efficiency).

 Project Metrics: Schedule variance, effort variance.

 Examples:

o Defect Density = Total defects / Size of software (KLOC or FP)

o Mean Time to Failure (MTTF)

o Customer Problem Metric

7. Managerial and Organizational Issues

 Commitment to Quality: From top-level management.

 Training and Skill Development: For developers and testers.

 Quality Budgeting: Allocate funds for testing, tools, audits.

 Organizational Culture: Encourage quality ownership and continuous improvement.

8. Defect Prevention

 Goal: Reduce defects rather than just detect.

 Methods:

o Root Cause Analysis (RCA)

o Process improvements

o Design reviews

o Static code analysis

o Automated testing

9. Reviews & Audits

 Reviews:

o Peer Reviews

o Walkthroughs

o Technical Reviews

o Inspections (most formal)

 Audits:

o Conducted by external bodies or QA departments.

o Ensure compliance with standards and processes.

10. SEI Capability Maturity Model (CMM)

CMM Levels:

1. Initial – Ad hoc processes.

2. Repeatable – Basic project management.

3. Defined – Standardized process.

4. Managed – Quantitative quality goals.

5. Optimizing – Continuous process improvement.

Benefits:

 Structured path for process improvement.

 Enhances predictability and product quality.

11. Personal Software Process (PSP)

 Developed by Watts Humphrey.

 Helps engineers improve personal work process.

 Involves:

o Time tracking

o Defect tracking

o Personal estimation techniques

 Encourages individual responsibility for quality.

12. Six Sigma

 A data-driven approach for process improvement.

 Goal: 3.4 defects per million opportunities (DPMO).

 Methodologies:

o DMAIC: Define, Measure, Analyze, Improve, Control (for existing processes).

o DMADV: Define, Measure, Analyze, Design, Verify (for new processes).

 Tools: Pareto charts, fishbone diagrams, control charts.

Summary Table

Topic Key Focus

Software Quality Conformance and usability

Quality Engineering Integration of engineering & quality practices

Quality Requirements Functional + non-functional specifications

Quality Standards ISO, IEEE, CMMI

Practices & Conventions Code standards, reviews, testing

ISO 9000/9001 Quality management frameworks

Software Quality Matrices Metrics to measure process and product quality

Managerial Issues Budget, leadership, training

Defect Prevention Root cause analysis, early detection

Topic Key Focus

Reviews & Audits Formal assessments for improvement

SEI CMM Maturity levels for software processes

PSP Individual productivity and quality management

Six Sigma Statistical process improvement

 Thank You…

	SPM
	Software Project Management
	(LECTURE NOTES)
	Prepared by:
	Er. AKSHAY KUMAR PATRA
	(Assistant Professor)
	DEPT. OF COMPUTER SCIENCE. & ENGINEERING
	Modern Engineering and Management Studies
	Banaparia, Kuruda, Balasore, Odisha.
	Module-1
	Software Project Management (1)
	Software Projects
	Ways of Categorizing Software Projects
	Problems with Software Projects
	Project Life Cycle
	Project Management
	Setting Objectives
	Stakeholders
	9. Project Team
	Step Wise: An Overview of Project Planning
	Project Evaluation
	Selection of Appropriate Project Approach
	Software Size Estimation
	Estimation of Effort & Duration
	COCOMO Models (Constructive Cost Model)
	Putnam’s Work (SLIM Model)
	Jensen’s Model
	Halstead’s Software Science
	MODULE-2
	1. Activity Planning in Software Project Management
	a. Project Schedules
	b. Sequencing and Scheduling Projects

	2. Network Planning Models
	a. AON (Activity on Node)
	b. AOA (Activity on Arrow)

	3. Identifying Critical Activities
	4. Crashing and Fast Tracking
	a. Crashing
	b. Fast Tracking

	5. Risk Management in Software Projects
	a. Risk Categories
	b. Risk Planning, Management, and Control
	c. Evaluating Risks to the Schedule

	6. PERT (Program Evaluation and Review Technique)
	7. Resource Allocation
	a. Identifying Resource Requirements
	b. Scheduling Resources
	c. Creating Critical Paths
	d. Publishing Schedule
	e. Cost Schedules
	f. Sequence Schedule

	8. CPM (Critical Path Method)
	9. Gantt Chart
	10. Staffing in Software Projects
	11. Organizing a Software Engineering Project
	Summary Diagram (Text-based View):
	1. Monitoring and Control – Visualizing Progress
	Key Concepts:
	Purpose:

	2. Earned Value Analysis (EVA)
	Key Metrics:
	Performance Indicators:
	Benefits:

	3. Managing People and Organizing Teams
	Key Areas:
	Team Building:

	4. Organizational Structures
	Types:
	Implications:

	5. Planning for Small Projects
	Key Practices:
	Tools:

	6. Case Studies
	Common Lessons:

	7. Agile Development
	Core Principles (from Agile Manifesto):
	Agile Practices:
	Benefits:

	Summary Table:

	1. Software Quality & Quality Engineering
	Software Quality
	Quality Engineering

	2. Defining Quality Requirements
	3. Quality Standards
	Common Software Quality Standards:
	Importance:

	4. Quality Practices & Conventions
	5. ISO 9000 & ISO 9001
	ISO 9000
	ISO 9001

	6. Software Quality Metrics (Matrices)
	7. Managerial and Organizational Issues
	8. Defect Prevention
	9. Reviews & Audits
	10. SEI Capability Maturity Model (CMM)
	CMM Levels:
	Benefits:

	11. Personal Software Process (PSP)
	12. Six Sigma
	Summary Table

